ECON3120/4120 Mathematics 2

Monday 8 December 2008, 09:00-12:00.

There are 2 pages of problems to be solved.
All printed and written material may be used. Pocket calculators are allowed.
State reasons for all your answers.

Grades given: A (best), B, C, D, E, F, with E as the weakest passing grade.

Problem 1

Consider the matrix $\mathbf{A}_{t}=\left(\begin{array}{rrrr}0 & 0 & 1 & 1 \\ 1 & 1 & 0 & -1 \\ 1 & 0 & t & 0 \\ 0 & 1 & 0 & 1\end{array}\right)$, where t is an arbitrary real number.
(a) Calculate the determinant $\left|\mathbf{A}_{t}\right|$. For what values of t will \mathbf{A}_{t} have an inverse?
(b) Show that $\mathbf{A}_{t}+\mathbf{A}_{s}=2 \mathbf{A}_{(t+s) / 2}$ and use this to calculate $\left|\mathbf{A}_{t}+\mathbf{A}_{s}\right|$.
(c) Does the equation system $\mathbf{A}_{t} \mathbf{x}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$ have a solution for every t ?
(You need not find the solutions.)

Problem 2

The equation system

$$
\begin{gathered}
e^{x} y+u-v=1 \\
x-e^{u^{2}+v}+y=-e
\end{gathered}
$$

defines u and v as continuously differentiable functions of x and y in an open set around the point P_{0} with coordinates $(x, y, u, v)=(0,0,1,0)$.

Find the values of $u_{x}^{\prime}, u_{y}^{\prime}, v_{x}^{\prime}$, and v_{y}^{\prime} at P_{0}.

Problem 3

Let

$$
f(x, y)=10 \ln (x+2 y)+x-22 y-\frac{3}{2} x^{2}+6 x y
$$

for all x and y with $x+2 y>0$.
Find the stationary points of f and determine for each of them if it is a local maximum point, a local minimum point or a saddle point.

Problem 4

(a) Find the general solution of the differential equation

$$
\begin{equation*}
\dot{x}-x=e^{t}-t \tag{*}
\end{equation*}
$$

(b) Let K be the integral curve for $(*)$ that passes through $\left(t_{0}, x_{0}\right)=(1,2)$. Find the tangent to K at the point $(1,2)$, and show that this tangent has no other point in common with K.

