Answers to the examination problems in ECON3120/4120 Mathematics 2, 8 December 2008

Problem 1

(a) Cofactor expansion gives

$$
\left|\mathbf{A}_{t}\right|=0-0+\left|\begin{array}{rrr}
1 & 1 & -1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right|-\left|\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & t \\
0 & 1 & 0
\end{array}\right|=-\left|\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right|+\left|\begin{array}{ll}
1 & 0 \\
1 & t
\end{array}\right|=t-2
$$

(We expand the original matrix along the first row, and the two determinants of order 3 are expanded along the second and third rows, respectively.)

The matrix \mathbf{A}_{t} has an inverse if and only if $|\mathbf{A}| \neq 0$, i.e. if and only if $t \neq 2$.
(b) Direct calculation yields

$$
\begin{aligned}
\mathbf{A}_{t}+\mathbf{A}_{s} & =\left(\begin{array}{rrrr}
0 & 0 & 1 & 1 \\
1 & 1 & 0 & -1 \\
1 & 0 & t & 0 \\
0 & 1 & 0 & 1
\end{array}\right)+\left(\begin{array}{rrrr}
0 & 0 & 1 & 1 \\
1 & 1 & 0 & -1 \\
1 & 0 & s & 0 \\
0 & 1 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{rrcr}
0 & 0 & 2 & 2 \\
2 & 2 & 0 & -2 \\
2 & 0 & t+s & 0 \\
0 & 2 & 0 & 2
\end{array}\right)=2\left(\begin{array}{cccr}
0 & 0 & 1 & 1 \\
1 & 1 & 0 & -1 \\
1 & 0 & (t+s) / 2 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)=2 \mathbf{A}_{(t+s) / 2}
\end{aligned}
$$

Since this is a 4×4 matrix, the result in part (a) implies that

$$
\left|\mathbf{A}_{t}+\mathbf{A}_{s}\right|=2^{4}\left|\mathbf{A}_{(t+s) / 2}\right|=16((t+s) / 2-2)=8 t+8 s-32 .
$$

(c) Since $\left|\mathbf{A}_{t}\right| \neq 0$ for all $t \neq 2$, Cramer's rule tells us that the equation system has a (unique) solution for such t. With $t=2$, Gaussian elimination yields

$$
\begin{aligned}
& \left(\begin{array}{rrrrr}
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & -1 & 1 \\
1 & 0 & 2 & 0 & 1 \\
0 & 1 & 0 & 1 & 1
\end{array}\right) \stackrel{-1}{\leftarrow} \downarrow \sim\left(\begin{array}{rrrrr}
1 & 0 & 2 & 0 & 1 \\
0 & 1 & -2 & -1 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1
\end{array}\right) \stackrel{-1}{ } \\
& \sim\left(\begin{array}{rrrrr}
1 & 0 & 2 & 0 & 1 \\
0 & 1 & -2 & -1 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 2 & 2 & 1
\end{array}\right) \underset{-2}{\leftarrow} \sim\left(\begin{array}{rrrrr}
1 & 0 & 2 & 0 & 1 \\
0 & 1 & -2 & -1 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

The last row in the final matrix corresponds to the impossible equation $0=-1$, so in this case the equation system has no solution.

Of course, we could start solving the system in a more or less systematic way without using formal Gaussian elimination, but the result would be the same: we would get an impossible equation, and so the given system has no solution if $t=2$.

Problem 2

Taking differentials, we get the equations

$$
\begin{array}{r}
e^{x} y d x+e^{x} d y+d u-d v=0 \\
d x-e^{u^{2}+v}(2 d u+d v)+d y=0
\end{array}
$$

Inserting the values of the variables at the point P_{0}, we get

$$
\begin{aligned}
d y+d u-d v & =0 \\
2 d u+d v)+d y & =0
\end{aligned} \quad \Longleftrightarrow \quad \begin{aligned}
d u-d v & =-d y \\
2 d u+d v & =\frac{1}{e}(d x+d y)
\end{aligned}
$$

Solving these equations for $d u$ and $d v$ yields

$$
d u=\frac{1}{3 e} d x+\frac{1-e}{3 e} d y, \quad d v=\frac{1}{3 e} d x+\frac{2 e+1}{3 e} d y
$$

Hence,

$$
u_{x}^{\prime}=\frac{1}{3 e}, \quad u_{y}^{\prime}=\frac{1-e}{3 e}, \quad v_{x}^{\prime}=\frac{1}{3 e}, \quad v_{y}^{\prime}=\frac{2 e+1}{3 e} .
$$

(Instead of taking differentials we could have used implicit differentiation with respect to each of x and y in the "usual" way, but that would lead to a little more work.)
(The problem only asks for the values of the partial derivatives of u and v at the particular point P_{0}, but it is likely that some students look for the values at a general point that solves the given equation system. The values of the partial derivatives at such a point are

$$
\begin{array}{ll}
u_{x}^{\prime}=\frac{e^{-u^{2}-v}-e^{x} y}{3}, & u_{y}^{\prime}=\frac{e^{-u^{2}-v}-e^{x}}{3} \\
v_{x}^{\prime}=\frac{e^{-u^{2}-v}+2 e^{x} y}{3}, & v_{y}^{\prime}=\frac{e^{-u^{2}-v}+2 e^{x}}{3}
\end{array}
$$

But there is hardly any reason to give extra credit for calculating these expressions.)

Problem 3

The stationary points are where

$$
\begin{equation*}
f_{1}^{\prime}(x, y)=\frac{10}{x+2 y}+1-3 x+6 y=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}^{\prime}(x, y)=\frac{20}{x+2 y}-22+6 x=0 \tag{2}
\end{equation*}
$$

Equation (1) implies $10 /(x+2 y)=3 x-6 y-1$, and if we insert this in equation (2) we get

$$
2(3 x-6 y-1)-22+6 x=0 \Longleftrightarrow 12 x-12 y=24 \Longleftrightarrow x=y+2
$$

Hence (equation (1) again),

$$
\frac{10}{3 y+2}+3 y-5=0 \Longleftrightarrow 10+(3 y+2)(3 y-5)=0 \Longleftrightarrow 9 y^{2}-9 y=0
$$

which has the solutions $y_{1}=0$ and $y_{2}=1$. Thus, the stationary points are $\left(x_{1}, y_{1}\right)=(2,0)$ and $\left(x_{2}, y_{2}\right)=(3,1)$.

To determine the nature of the stationary points we shall use the secondderivative test. The various second derivatives of f are

$$
\begin{aligned}
f_{11}^{\prime \prime}(x, y) & =-\frac{10}{(x+2 y)^{2}}-3, \quad f_{12}^{\prime \prime}(x, y)=-\frac{20}{(x+2 y)^{2}}+6 \\
f_{22}^{\prime \prime}(x, y) & =-\frac{40}{(x+2 y)^{2}} .
\end{aligned}
$$

With $A=f_{11}^{\prime \prime}(x, y), B=f_{12}^{\prime \prime}(x, y)$, and $C=f_{22}^{\prime \prime}(x, y)$, the test gives

Point	A	B	C	$A C-B^{2}$	Result
$(2,0)$	$-\frac{11}{2}$	1	-10	54	Local max. point
$(3,1)$	$-\frac{17}{5}$	$\frac{26}{5}$	$-\frac{8}{5}$	$-\frac{108}{5}$	Saddle point

Problem 4

(a) We use formula (5) on page 334 in EMEA (page 13 in MA II) with $a=-1$ and $b(t)=e^{t}-t$, and get

$$
\begin{equation*}
x=C e^{t}+e^{t} \int\left(1-t e^{-t}\right) d t \tag{*}
\end{equation*}
$$

To evaluate the integral we use integration by parts on the second term:

$$
\int\left(1-t e^{-t}\right) d t=t-\int t e^{-t} d t=t+t e^{-t}-\int 1 e^{-t} d t=t+t e^{-t}+e^{-t} \quad(+ \text { const. })
$$

(The constant of integration is already taken care of by C in (*).) Inserting this integral into $(*)$ we get

$$
x=C e^{t}+t e^{t}+t+1
$$

(b) The solution will pass through $\left(t_{0}, x_{0}\right)=(1,2)$ if and only if C is such that

$$
2=C e+e+1+1, \quad \text { i.e. } \quad C=-1
$$

Thus the desired solution is $x=(t-1) e^{t}+t+1$, and K is the graph of this solution in the $t x$-plane. The derivative of x is $\dot{x}=t e^{t}+1$, so the slope of the tangent to K at $\left(t_{0}, x_{0}\right)=(1,2)$ is $a=e+1$. Hence the equation of the tangent is

$$
x-2=(e+1)(t-1) \quad \text { or, equivalently, } \quad x=(e+1) t-e+1
$$

A point (t, x) belongs to both K and this tangent if and only if

$$
x=(t-1) e^{t}+t+1 \quad \text { and } \quad x=(e+1) t-e+1
$$

These equations imply

$$
\begin{aligned}
(t-1) e^{t}+t+1 & =(e+1) t-e+1=(t-1) e+t+1 \\
& \Longleftrightarrow(t-1) e^{t}=(t-1) e \Longleftrightarrow(t-1)\left(e^{t}-e\right)=0
\end{aligned}
$$

The last equation is satisfied for $t=1$ but not for any other value of t. (For if $t \neq 1$, then $e^{t} \neq e$ too, and then $(t-1)\left(e^{t}-e\right) \neq 0$.) Thus $(t, x)=(1,2)$ is the only point that lies on both K and the tangent we found above.

