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Problem 1

(a) Cofactor expansion gives

|At| = 0− 0 +

∣∣∣∣∣∣
1 1 −1
1 0 0
0 1 1

∣∣∣∣∣∣−
∣∣∣∣∣∣
1 1 0
1 0 t
0 1 0

∣∣∣∣∣∣ = −
∣∣∣∣ 1 −1
1 1

∣∣∣∣ +
∣∣∣∣ 1 0
1 t

∣∣∣∣ = t− 2 .

(We expand the original matrix along the first row, and the two determinants of
order 3 are expanded along the second and third rows, respectively.)

The matrix At has an inverse if and only if |A| �= 0, i.e. if and only if t �= 2.

(b) Direct calculation yields

At + As =

⎛
⎜⎝

0 0 1 1
1 1 0 −1
1 0 t 0
0 1 0 1

⎞
⎟⎠ +

⎛
⎜⎝

0 0 1 1
1 1 0 −1
1 0 s 0
0 1 0 1

⎞
⎟⎠

=

⎛
⎜⎝

0 0 2 2
2 2 0 −2
2 0 t + s 0
0 2 0 2

⎞
⎟⎠ = 2

⎛
⎜⎝

0 0 1 1
1 1 0 −1
1 0 (t + s)/2 0
0 1 0 1

⎞
⎟⎠ = 2A(t+s)/2

Since this is a 4× 4 matrix, the result in part (a) implies that

|At + As| = 24|A(t+s)/2| = 16
(
(t + s)/2− 2

)
= 8t + 8s− 32 .

(c) Since |At| �= 0 for all t �= 2, Cramer’s rule tells us that the equation system
has a (unique) solution for such t. With t = 2, Gaussian elimination yields

⎛
⎜⎝

0 0 1 1 1
1 1 0 −1 1
1 0 2 0 1
0 1 0 1 1

⎞
⎟⎠

←
←
−1 ← ∼

⎛
⎜⎝

1 0 2 0 1
0 1 −2 −1 0
0 0 1 1 1
0 1 0 1 1

⎞
⎟⎠ −1

←

∼

⎛
⎜⎝

1 0 2 0 1
0 1 −2 −1 0
0 0 1 1 1
0 0 2 2 1

⎞
⎟⎠ −2
←
∼

⎛
⎜⎝

1 0 2 0 1
0 1 −2 −1 0
0 0 1 1 1
0 0 0 0 −1

⎞
⎟⎠

The last row in the final matrix corresponds to the impossible equation 0 = −1,
so in this case the equation system has no solution.
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Of course, we could start solving the system in a more or less systematic way
without using formal Gaussian elimination, but the result would be the same: we
would get an impossible equation, and so the given system has no solution if t = 2.

Problem 2

Taking differentials, we get the equations

exy dx + ex dy + du− dv = 0

dx− eu2+v(2 du + dv) + dy = 0

Inserting the values of the variables at the point P0, we get

dy + du− dv = 0
dx− e(2 du + dv) + dy = 0

⇐⇒ du− dv = −dy

2 du + dv = 1
e (dx + dy)

Solving these equations for du and dv yields

du =
1
3e

dx +
1− e

3e
dy , dv =

1
3e

dx +
2e + 1

3e
dy .

Hence,

u′
x =

1
3e

, u′
y =

1− e

3e
, v′

x =
1
3e

, v′
y =

2e + 1
3e

.

(Instead of taking differentials we could have used implicit differentiation with
respect to each of x and y in the “usual” way, but that would lead to a little more
work.)

(The problem only asks for the values of the partial derivatives of u and v at
the particular point P0, but it is likely that some students look for the values at
a general point that solves the given equation system. The values of the partial
derivatives at such a point are

u′
x =

e−u2−v − exy

3
,

v′
x =

e−u2−v + 2exy

3
,

u′
y =

e−u2−v − ex

3
,

v′
y =

e−u2−v + 2ex

3
.

But there is hardly any reason to give extra credit for calculating these expres-
sions.)
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Problem 3

The stationary points are where

f ′
1(x, y) =

10
x + 2y

+ 1− 3x + 6y = 0 (1)

and

f ′
2(x, y) =

20
x + 2y

− 22 + 6x = 0 . (2)

Equation (1) implies 10/(x + 2y) = 3x− 6y − 1, and if we insert this in equation
(2) we get

2(3x− 6y − 1)− 22 + 6x = 0 ⇐⇒ 12x− 12y = 24 ⇐⇒ x = y + 2 .

Hence (equation (1) again),

10
3y + 2

+ 3y − 5 = 0 ⇐⇒ 10 + (3y + 2)(3y − 5) = 0 ⇐⇒ 9y2 − 9y = 0 ,

which has the solutions y1 = 0 and y2 = 1. Thus, the stationary points are
(x1, y1) = (2, 0) and (x2, y2) = (3, 1).

To determine the nature of the stationary points we shall use the second-
derivative test. The various second derivatives of f are

f ′′
11(x, y) = − 10

(x + 2y)2
− 3 , f ′′

12(x, y) = − 20
(x + 2y)2

+ 6 ,

f ′′
22(x, y) = − 40

(x + 2y)2
.

With A = f ′′
11(x, y), B = f ′′

12(x, y), and C = f ′′
22(x, y), the test gives

Point A B C AC −B2 Result

(2, 0) −11
2

1 −10 54 Local max. point

(3, 1) −17
5

26
5

−8
5

−108
5

Saddle point
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Problem 4

(a) We use formula (5) on page 334 in EMEA (page 13 in MA II) with a = −1
and b(t) = et − t, and get

x = Cet + et

∫
(1− te−t) dt . (∗)

To evaluate the integral we use integration by parts on the second term:
∫

(1− te−t) dt = t−
∫

te−t dt = t + te−t −
∫

1 e−t dt = t + te−t + e−t (+ const.)

(The constant of integration is already taken care of by C in (∗).) Inserting this
integral into (∗) we get

x = Cet + tet + t + 1 .

(b) The solution will pass through (t0, x0) = (1, 2) if and only if C is such that

2 = Ce + e + 1 + 1 , i.e. C = −1 .

Thus the desired solution is x = (t−1)et+t+1, and K is the graph of this solution
in the tx-plane. The derivative of x is ẋ = tet + 1, so the slope of the tangent to
K at (t0, x0) = (1, 2) is a = e + 1. Hence the equation of the tangent is

x− 2 = (e + 1)(t− 1) or, equivalently, x = (e + 1)t− e + 1.

A point (t, x) belongs to both K and this tangent if and only if

x = (t− 1)et + t + 1 and x = (e + 1)t− e + 1 .

These equations imply

(t− 1)et + t + 1 = (e + 1)t− e + 1 = (t− 1)e + t + 1
⇐⇒ (t− 1)et = (t− 1)e ⇐⇒ (t− 1)(et − e) = 0.

The last equation is satisfied for t = 1 but not for any other value of t. (For if
t �= 1, then et �= e too, and then (t − 1)(et − e) �= 0.) Thus (t, x) = (1, 2) is the
only point that lies on both K and the tangent we found above.
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