ECON3120/4120 Mathematics 2

Wednesday, 24 November 2004, 14.30-17.30

There are 2 pages of problems to be solved.
All printed and written material may be used, as well as pocket calculators.
Give reasons for all your answers.

Grades given run from A (best) to E for passes, and F for fail.

Problem 1

Let $f(x)=\left(x^{2}-a\right) e^{-b x}$, where a and b are constants, $b \neq 0$.
(a) Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(b) Put $a=5$ and $b=1 / 2$. Find the local and global extreme points of f, if any.
(c) Calculate $\int_{0}^{\infty}\left(x^{2}-5\right) e^{-x / 2} d x$.

Problem 2

(a) Evaluate the determinant $\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & a \\ 1 & 2 & b\end{array}\right|$.
(b) For what values of the parameters a, b, and c will the equation system

$$
\begin{aligned}
& x+y+z=c \\
& x+2 y+a z=2 c \\
& x+2 y+b z=2
\end{aligned}
$$

have (i) a unique solution, (ii) several solutions, (iii) no solutions?

Problem 3

Consider the problem
$(*) \quad$ maximize $f(x, y, z)=x+2 y+\ln (1+z) \quad$ subject to $\quad x^{2}+y^{2}-a z=0$, where a is a constant.
(a) Write down the necessary Lagrange conditions for a point (x, y, z) to solve problem (*).
(b) Solve problem (*) when $a=-3$. (Assume that there exists a solution.)
(c) Show that $(*)$ does not have any solutions when (i) $a=0$, (ii) $a=1$.

Problem 4

(a) Show that, if $\alpha>0$, there is no 3×3 matrix \mathbf{C} such that $\mathbf{C}^{2}=-\alpha \mathbf{I}_{3}$.
(b) Use the result in (a) to show that there is no 3×3 matrix \mathbf{B} such that $\mathbf{B}^{2}+\mathbf{B}+\mathbf{I}_{3}=\mathbf{0}$.
(Hint: What is $\left(\mathbf{B}+\frac{1}{2} \mathbf{I}_{3}\right)^{2}$?)

