ECON3120/4120 Mathematics 2

Wednesday, 24 November 2004, 14.30–17.30

There are 2 pages of problems to be solved.

All printed and written material may be used, as well as pocket calculators.

Give reasons for all your answers.

Grades given run from A (best) to E for passes, and F for fail.

Problem 1

Let $f(x) = (x^2 - a)e^{-bx}$, where a and b are constants, $b \neq 0$.

- (a) Compute f'(x) and f''(x).
- (b) Put a = 5 and b = 1/2. Find the local and global extreme points of f, if any.

(c) Calculate
$$\int_0^\infty (x^2 - 5)e^{-x/2} dx$$
.

Problem 2

- (a) Evaluate the determinant $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & a \\ 1 & 2 & b \end{vmatrix}$.
- (b) For what values of the parameters a, b, and c will the equation system

$$x + y + z = c$$

$$x + 2y + az = 2c$$

$$x + 2y + bz = 2$$

have (i) a unique solution, (ii) several solutions, (iii) no solutions?

(Cont.)

m2xh04en 19.11.2004 840

Problem 3

Consider the problem

(*) maximize $f(x, y, z) = x + 2y + \ln(1+z)$ subject to $x^2 + y^2 - az = 0$,

where a is a constant.

- (a) Write down the necessary Lagrange conditions for a point (x, y, z) to solve problem (*).
- (b) Solve problem (*) when a = -3. (Assume that there exists a solution.)
- (c) Show that (*) does not have any solutions when (i) a = 0, (ii) a = 1.

Problem 4

- (a) Show that, if $\alpha > 0$, there is no 3×3 matrix **C** such that $\mathbf{C}^2 = -\alpha \mathbf{I}_3$.
- (b) Use the result in (a) to show that there is no 3×3 matrix **B** such that $\mathbf{B}^2 + \mathbf{B} + \mathbf{I}_3 = \mathbf{0}.$ (*Hint:* What is $(\mathbf{B} + \frac{1}{2}\mathbf{I}_3)^2$?)