ECON3120/ECON4120 Mathematics 2

Tuesday June 3 2008, 09:00-12:00
There are 2 pages of problems to be solved.
All printed and written material may be used, as well as pocket calculators.
Give reasons for all your answers.
Grades given run from A (best) to E for passes, and F for fail.

Problem 1 Let for each d the matrix \mathbf{A}_{d} be given by

$$
\mathbf{A}_{d}=\left(\begin{array}{ccccc}
d^{2} & 1 & 2 & 3 & 4 \\
0 & -1 & 5 & 6 & 7 \\
0 & 0 & d^{2}+1 & 8 & 9 \\
0 & 0 & 0 & -1 & 10 \\
0 & 0 & 0 & 0 & d^{2}
\end{array}\right)
$$

(a) Calculate $\left|\mathbf{A}_{d}\right|$ and show that the nth power \mathbf{A}_{d}^{n} has an inverse if and only if $d \neq 0$.
(b) Consider the equation system

$$
\mathbf{A}_{d}^{2008} \mathbf{x}=\left(\begin{array}{l}
d \\
d \\
d \\
d \\
d
\end{array}\right)
$$

where \mathbf{x} is a vector $\left(x_{1}, \ldots, x_{5}\right)^{\prime}$ of five unknowns and \mathbf{A}_{d}^{2008} is the 2008th power of \mathbf{A}_{d}.
(i) For what values of d will the equation system have a unique solution?
(ii) Show that there always is a solution.

You may use the result given in part (a) no matter whether you managed to show it or not.

Problem 2 The equation system

$$
\begin{aligned}
x \ln u+v \ln y & =0 \\
-e^{y}+u v+e^{u x} & =0
\end{aligned}
$$

defines (u, v) as continuously differentiable functions of (x, y) near the point $(x, y, u, v)=$ ($a, a, 1,0$), for a suitable positive constant a.

Differentiate the system (i.e. calculate differentials), and find expressions for $v_{x}^{\prime}(a, a)$ and $v_{y}^{\prime}(a, a)$.

Problem 3 Let $b>0$ be a constant. Consider the differential equation

$$
\begin{equation*}
\ddot{y}=\dot{y}+e^{-b t} \tag{}
\end{equation*}
$$

Thus, if $z=\dot{y}$, then z satisfies the differential equation

$$
\begin{equation*}
\dot{z}=z+e^{-b t} \tag{**}
\end{equation*}
$$

(a) Find the general solution of $\left({ }^{* *}\right)$.
(b) Use the general solution z of $\left({ }^{* *}\right)$ to find the particular solution y of $\left({ }^{*}\right)$ with the property that $\lim _{t \rightarrow \infty} y(t)=1$.

Problem 4 Let

$$
f(x, y)=e^{x y^{2}}-A x^{2} y-1,
$$

where $A \neq 0$ is a constant. Consider the problem

$$
\max _{(x, y)} f(x, y) \quad \text { subject to } \quad \begin{cases}x & \geq 0 \tag{P}\\ y & \geq 0 \\ x+y & \leq A^{2}\end{cases}
$$

(a) State the Kuhn-Tucker conditions associated with the problem (P), and show that they are satisfied at the origin.
(b) You can take for granted that problem (P) does not have a solution on the axes. Use this to show that at the solution point, one and only one of the Lagrange multipliers is $\neq 0$.
Hint: Show first that f has no stationary point outside the axes.

