# Answers to the examination problems in ECON3120/4120 Mathematics 2, 2 June 2009 

## Problem 1

(a) The partial derivatives are

$$
\begin{aligned}
f_{1}^{\prime} x, y & =3 e^{3 x}+3 y e^{x}, & & f_{2}^{\prime}(x, y)=3 e^{x}-3 y^{2} \\
f_{11}^{\prime \prime}(x, y) & =9 e^{3 x}+3 y e^{x}, & & f_{12}^{\prime \prime}(x, y)=3 e^{x}, \quad f_{22}^{\prime \prime}(x, y)=-6 y
\end{aligned}
$$

(b) A point $(x, y)$ is a stationary point for $f$ if and only if

$$
\begin{aligned}
f_{1}^{\prime}(x, y) & =0 \\
f_{2}^{\prime}(x, y) & =0
\end{aligned} \Longleftrightarrow \begin{aligned}
3 e^{x}\left(e^{2 x}+y\right) & =0 \\
3\left(e^{x}-y^{2}\right) & =0
\end{aligned} \Longleftrightarrow \quad \Longleftrightarrow \quad y=-e^{2 x} ~ 子 \quad e^{x}=y^{2}
$$

From the last pair of equations we get $e^{x}=e^{4 x} \Longleftrightarrow x=4 x$, which has the unique solution $x=0$, and then $y=-e^{2 x}=-1$. Thus, $f$ has exactly one stationary point, namely $(0,-1)$.

To determine the nature of this stationary point we use the second-derivative test with $A=f_{11}^{\prime \prime}(0,-1)=6, B=f_{12}^{\prime \prime}(0,-1)=3, C=f_{22}^{\prime \prime}(0,-1)=6$. We see that $A>0$ and $A C-B^{2}=27>0$, and it follows that $(0,-1)$ is a local minimum point for $f$.
(Comment: It is not a global minimum point, because $f(0, y)=1+3 y-y^{3}$ tends to $-\infty$ as $y \rightarrow \infty$.)
(c) The equation $f(x, y)=3$ determines $y$ as a function of $x$ in an open set around $\left(x_{0}, y_{2}\right)=(0,-2)$. The slope of the tangent to the curve at this point is

$$
y^{\prime}=-\frac{f_{1}^{\prime}(0,-2)}{f_{2}(0,-2)}=-\frac{3 e^{0}-6 e^{0}}{3 e^{0}-3(-2)^{2}}=-\frac{1}{3} .
$$

The tangent is therefore given by the equation

$$
y-(-2)=-\frac{1}{3}(x-0) \Longleftrightarrow y=-\frac{1}{3} x-2
$$

## Problem 2

(a) The derivative of $f$ is $f^{\prime}(x)=2 x e^{x}+x^{2} e^{x}=x(x+2) e^{x}$, which has the same sign as $x(x+2)$. It can be seen from a sign diagram that

$$
\begin{aligned}
& f^{\prime}(x)>0 \text { if } x<-2 \\
& f^{\prime}(x)<0 \text { if }-2<x<0 \\
& f^{\prime}(x)>0 \text { if } x>0
\end{aligned}
$$

Since $f$ is continuous everywhere, this implies that $f$ is strictly increasing over $(-\infty,-2]$, strictly decreasing over $[-2,0]$, and strictly increasing again over $[0, \infty)$.

Hence, $f$ is one-to-one over $I_{1}=(-\infty,-2)$, but not over $I_{2}=(-\infty, 0)$ or $I_{3}=(-2, \infty)$. (Hint: A sketch of the graph of $f$ will help you see what happens.) It follows that $f$ restricted to $I_{1}$ has an inverse. Over $I_{2}$ or $I_{3}$ the function does not have an inverse function.
(b) From the inverse function theorem (Theorem 7.3.1 in EMEA or Theorem 7.1.1 in MA I) we get

$$
g^{\prime}\left(f\left(x_{0}\right)\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}=\frac{1}{x_{0}\left(x_{0}+2\right) e^{x_{0}}} .
$$

## Problem 3

(a) Gaussian elimination yields

$$
\begin{aligned}
\left(\begin{array}{rrrr}
1 & 1 & -3 & a \\
1 & -3 & 4 & b \\
3 & -1 & -2 & c
\end{array}\right) \stackrel{-1}{ }{ }^{-3} & \sim\left(\begin{array}{cccc}
1 & 1-3 & a & \\
0 & -4 & 7 & b-a \\
0 & -4 & 7 & c-3 a
\end{array}\right) \longleftarrow-1 \\
& \sim\left(\begin{array}{rrrc}
1 & 1 & -3 & a \\
0 & -4 & 7 & b-a \\
0 & 0 & 0 & c-b-2 a
\end{array}\right)
\end{aligned}
$$

From the last matrix here it is clear that the system has solutions if and only if $c=b+2 a$.
(Comment: There is no need to carry the elimination process any further. It is also clear that if the system has solutions, then the solutions have 1 degree of freedom.)
(b) Matrix multiplication gives

$$
\mathbf{A B}=\left(\begin{array}{ccc}
1 & t+9 & 4 u+36 \\
2 r+4 & r t-17 & -19 r+3 u-11 \\
s+1 & t-4 s+5 & s u-8
\end{array}\right)
$$

We know that $\mathbf{B}=\mathbf{A}^{-1} \Longleftrightarrow \mathbf{A B}=\mathbf{I}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. Inspection of the elements in the first row and the first column of $\mathbf{A B}$ shows that, if $\mathbf{A B}=\mathbf{I}$, then

$$
r=-2, \quad s=-1, \quad t=-9, \quad u=-9 .
$$

It is easy to show that with these values of $r, s, t$, and $u$, the remaining elements of $\mathbf{A B}$ are also equal to the corresponding elements of $\mathbf{I}$.

## Problem 4

(a) With $u=1+t e^{t}$ we get $d u=\left(e^{t}+t e^{t}\right) d t=e^{t}(1+t) d t$ and

$$
\begin{aligned}
\int \frac{t+1}{t\left(1+t e^{t}\right)} d t & =\int \frac{t+1}{t\left(1+t e^{t}\right)} \frac{1}{e^{t}(1+t)} d u=\int \frac{1}{t e^{t}\left(1+t e^{t}\right)} d u \\
& =\int \frac{1}{(u-1) u} d u=\int\left(\frac{1}{u-1}-\frac{1}{u}\right) d u \\
& =\ln |u-1|-\ln |u|+C=\ln \left|\frac{u-1}{u}\right|+C=\ln \left|\frac{t e^{t}}{1+t e^{t}}\right|+C
\end{aligned}
$$

(Comment: It can be shown that $1+t e^{t}$ is positive for all $t$, but that is not important in this problem.)
(b) The equation is separable. It has one constant solution, namely $x \equiv 0$. The nonconstant solutions are determined by the standard procedure of separation and integration:

$$
\begin{aligned}
\frac{\dot{x}}{x^{2}} & =\frac{1+t}{t\left(1+t e^{t}\right)} \\
\int \frac{1}{x^{2}} d x & =\int \frac{1+t}{t\left(1+t e^{t}\right)} d t \\
-\frac{1}{x} & =\ln \left|\frac{t e^{t}}{1+t e^{t}}\right|+C \quad \quad(\text { from part (a)) } \\
x & =-\frac{1}{\ln \left|\frac{t e^{t}}{1+t e^{t}}\right|+C}
\end{aligned}
$$

(c) One way to solve this problem is to determine the constant $C$ in the solution above such that the corresponding solution curve passes through $(1,1)$, and then differentiate $x$ to find the slope of the tangent. (The desired value of $C$ turns out to be $C=\ln (1+e)-2$.) But this involves some messy computation with possibilities for mistakes.

A simpler solution is to determine the slope directly from the differential equation. At $(1,1)$ we get $(1+e) \dot{x}=2$, so the slope of the tangent is $2 /(1+e)$. The equation for the tangent is then

$$
x-1=\frac{2}{1+e}(t-1) \Longleftrightarrow x=\frac{2}{1+e} t+\frac{e-1}{1+e} .
$$

(In this equation $(t, x)$ are the coordinates of an arbitrary point on the tangent.)

