ECON3120/4120 Mathematics 2

Wednesday 2 June 2010, 09:00-12:00.
There are 2 pages of problems to be solved.
All printed and written material may be used. Pocket calculators are allowed.
State reasons for all your answers.
Grades given run from A (best) to E for passes, and F for fail.

Problem 1

Let f be the function given by $f(x, y)=\ln (1+x)+3 \ln (1+y)$.
(a) Use Lagrange's method to solve the problem

$$
\text { maximize } \quad f(x, y) \quad \text { subject to } \quad a x+y=m,
$$

where a and m are positive constants. You may take it as given that the problem has a solution.
(b) Consider the triangular region $T=\{(x, y): x \geq 0, y \geq 0,2 x+y \leq 8\}$ in the $x y$-plane. Show that $f(x, y)$ attains both a maximum and a minimum over T, and find the maximum and minimum points.

Problem 2

(a) Lat f be a differentiable function with $f(x)>0$ for all x. Show that

$$
\int \frac{f^{\prime}(x)}{f(x)} d x=\ln f(x)+C
$$

(b) Find the general solution of the separable differential equation

$$
\begin{equation*}
\left(1+t^{2}\right) e^{x} \dot{x}=2 t\left(1+e^{x}\right) \tag{*}
\end{equation*}
$$

(c) One of the solution curves for the equation $(*)$ passes through the point $\left(t_{0}, x_{0}\right)=(1,0)$. Show that the tangent to that curve at this point intersects the line $x=t$ at $(2,2)$.

Problem 3

A market survey for a certain good showed that the sales at time t would be given by

$$
S(t)=C e^{-a t}\left(e^{-a t}+b\right)^{-2}
$$

where a, b, and C are positive constants.
(a) Find an expression for $S^{\prime}(t)$.
(b) Show that S has exactly one stationary point t^{*}, and show that t^{*} maximizes $S(t)$ over $(-\infty, \infty)$.
(c) Find a necessary and sufficient condition for $t^{*}>0$.
(d) Show that the integral $\int_{0}^{\infty} S(t) d t$ converges, and find its value.

Problem 4

For each real number t we define the matrix \mathbf{A}_{t} by

$$
\mathbf{A}_{t}=\left(\begin{array}{crr}
0 & 1 & t \\
1 & 0 & -t \\
t-1 & 1 & 1
\end{array}\right)
$$

(a) Calculate the determinant $\left|\mathbf{A}_{t}\right|$.
(b) Find all solutions of the system of linear equations

$$
\begin{aligned}
y+t z & =0 \\
x-t z & =0 \\
(t-1) x+y+z & =0
\end{aligned}
$$

(i) for $t=1$; (ii) for $t=2$.
(c) If \mathbf{B} and \mathbf{C} are $n \times n$ matrices we say that they commute with each other if
$\mathbf{B C}=\mathbf{C B}$. Show that if \mathbf{B} and \mathbf{C} commute with each other and \mathbf{B} has an inverse, then \mathbf{B}^{-1} and \mathbf{C} will also commute with each other.

Problem 5

Let $f(x)=x^{1 / \ln \left(e^{x}-1\right)}$ for all $x>0, x \neq \ln 2$. Find the limit $\lim _{x \rightarrow 0^{+}} f(x)$ if it exists. (Hint: Look at $\ln f(x)$.)

