Answers to the examination problems in ECON3120/4120 Mathematics 2, 2 June 2010

Problem 1

(a) The maximum point must satisfy the Lagrange conditions, and with the Lagrangian $\mathcal{L}(x, y)=\ln (1+x)+3 \ln (1+y)-\lambda(a x+y-m)$ the first-order conditions become

$$
\begin{align*}
\mathcal{L}_{1}^{\prime}(x, y) & =\frac{1}{1+x}-\lambda a=0 \tag{1}\\
\mathcal{L}_{2}^{\prime}(x, y) & =\frac{3}{1+y}-\lambda=0 \tag{2}
\end{align*}
$$

The constraint is

$$
\begin{equation*}
a x+y=m . \tag{3}
\end{equation*}
$$

Equation (2) implies $\lambda=\frac{3}{1+y}$, and then (1) yields

$$
\frac{1}{1+x}=\lambda a=\frac{3 a}{1+y} .
$$

Hence,

$$
1+y=3 a(1+x)=3 a+3 a x \Longleftrightarrow-3 a x+y=3 a-1 .
$$

Together with (3) this yields

$$
x=\frac{m-3 a+1}{4 a}, \quad y=\frac{3 a+3 m-1}{4} .
$$

This is the only point that satisfies the Lagrange conditions, and since we know that there exists a maximum point, this point must be it.
(b) The set T is the triangular region with corners at $(0,0),(4,0)$, and $(0,8)$. All points on the sides I, II, III of the triangle belong to T, so T is a closed set. It is also bounded and f is continuous, so the extreme value theorem guarantees that f will attain both a maximum and a minimum over T. Because f has no stationary points, the extreme points must be on the boundary of T. It is also clear that f is strictly increasing with respect to each of the variables, so $(0,0)$ is the unique minimum point, and the maximum point
 must be somewhere on II.

The points on II all belong to the straight line $2 x+y=8$, and it follows from part (a) that the maximum of $f(x, y)$ along that line (that is, on the part where $x>-1$ and $y>-1$ so that f is defined) is attained at the point $\left(x^{*}, y^{*}\right)=$ (3/8,29/4). This point obviously belongs to the line segment II, and it is therefore the maximum point for f over T. The extreme values of f are then

$$
\begin{aligned}
f_{\mathrm{maks}} & =f\left(x^{*}, y^{*}\right)=f\left(\frac{3}{8}, \frac{29}{4}\right)=\ln \left(\frac{11}{8}\right)+3 \ln \left(\frac{33}{4}\right) \approx 6.6490933 \\
f_{\min } & =f(0,0)=0
\end{aligned}
$$

(The expression for $f_{\text {maks }}$ can be simplified to $4 \ln 11+3 \ln 3-9 \ln 2$, but that is not necessary.)

Problem 2

(a) The result follows immediately from $\frac{d}{d x}(\ln f(x))=\frac{f^{\prime}(x)}{f(x)}$.
(b) The standard procedure yields

$$
\begin{array}{rlr}
\frac{e^{x}}{1+e^{x}} \dot{x} & =\frac{2 t}{1+t^{2}} \\
\int \frac{e^{x}}{1+e^{x}} d x & =\int \frac{2 t}{1+t^{2}} d t & \\
\ln \left(1+e^{x}\right) & =\ln \left(1+t^{2}\right)+C_{1} & \quad \text { (by part (a)) } \\
1+e^{x} & =C\left(1+t^{2}\right) \quad & \text { (with } \left.C=e^{C_{1}}\right)
\end{array}
$$

Solving for x yields $x=\ln \left(C\left(1+t^{2}\right)-1\right)$. There are no constant solutions.
(c) We need to find the tangent to the solution curve at $\left(t_{0}, x_{0}\right)=(1,0)$. The slope of the tangent can be found directly from the differential equation, since

$$
\dot{x}=\frac{2 t\left(1+e^{x}\right)}{\left(1+t^{2}\right) e^{x}}
$$

With $t=1$ and $x=0$ this gives $\dot{x}=2$. Thus the tangent is given by the equation

$$
x-0=2(t-1) \Longleftrightarrow x=2 t-2,
$$

and this equation is satisfied at $(t, x)=(2,2)$.
Alternatively, we can first determine the solution curve through $\left(t_{0}, x_{0}\right)$. Then we need to find the corresponding value of C :

$$
x_{0}=\ln \left(C\left(1+t_{0}^{2}\right)-1\right) \Longleftrightarrow 0=\ln (2 C-1) \Longleftrightarrow 2 C-1=1 \Longleftrightarrow C=1
$$

Thus the solution curve in question is $x=\ln \left(1+t^{2}-1\right)=2 \ln t$, and $\dot{x}=2 / t$, etc.

Problem 3

(a) The derivative of S is given by

$$
\begin{aligned}
S^{\prime}(t) & =C\left(-a e^{-a t}\right)\left(e^{-a t}+b\right)^{-2}+C e^{-a t}(-2)\left(e^{-a t}+b\right)^{-3}\left(-a e^{-a t}\right) \\
& =\frac{2 a C e^{-2 a t}}{\left(e^{-a t}+b\right)^{3}}-\frac{a C e^{-a t}}{\left(e^{-a t}+b\right)^{2}}=\cdots=\frac{a C e^{-a t}\left(e^{-a t}-b\right)}{\left(e^{-a t}+b\right)^{3}}
\end{aligned}
$$

(b) We see from the answer in part (a) that

$$
S^{\prime}\left(t^{*}\right)=0 \Longleftrightarrow e^{-a t^{*}}=b \Longleftrightarrow-a t^{*}=\ln b \Longleftrightarrow t^{*}=-(\ln b) / a
$$

The sign of $S^{\prime}(t)$ is the same as the sign of the factor $e^{-a t}-b$. This factor is strictly decreasing with respect to t, so $S^{\prime}(t)>0$ for $t<t^{*}$ and $S^{\prime}(t)<0$ for $t>t^{*}$. Thus, S is strictly increasing in the interval $\left(-\infty, t^{*}\right]$ and strictly decreasing in $\left[t^{*}, \infty\right)$, and it follows that t^{*} is a global maximum point for S.
(c) Since a and b are positive, $t^{*}>0 \Longleftrightarrow \ln b<0 \Longleftrightarrow 0<b<1$.
(d) The substitution $u=e^{-a t}+b$ yields $d u=-a e^{-a t} d t$ and

$$
\int S(t) d t=\int C \frac{e^{-a t}}{\left(e^{-a t}+b\right)^{2}} d t=-\frac{C}{a} \int \frac{1}{u^{2}} d u=\frac{C}{a u}+K=\frac{C}{a\left(e^{-a t}+b\right)}+K
$$

where K is the constant of integration. It follows that

$$
\int_{0}^{T} S(t) d t=\left.\right|_{0} ^{T} \frac{C}{a\left(e^{-a t}+b\right)} d t=\frac{C}{a}\left(\frac{1}{e^{-a T}+b}-\frac{1}{1+b}\right)=\frac{C}{a} \frac{1-e^{-a T}}{\left(e^{-a T}+b\right)(b+1)}
$$

and

$$
\int_{0}^{\infty} S(t) d t=\lim _{T \rightarrow \infty} \int_{0}^{T} S(t) d t=\frac{C}{a b(b+1)}
$$

because $e^{-a T} \rightarrow 0$ as $T \rightarrow \infty$.

Problem 4

(a) Cofactor expansion along the first row gives
$\left|\mathbf{A}_{t}\right|=0 \cdot(\cdots)-1\left|\begin{array}{cr}1 & -t \\ t-1 & 1\end{array}\right|+t\left|\begin{array}{cc}1 & 0 \\ t-1 & 1\end{array}\right|=-\left(1+t^{2}-t\right)+t=-t^{2}+2 t-1$.
(b) (i) With $t=1$ the system becomes

$$
\begin{aligned}
y+z & =0 \\
-z & =0 \\
x+z & =0
\end{aligned} \quad \Longleftrightarrow \quad \begin{aligned}
& y=-z \\
& x=z
\end{aligned}
$$

and the solutions of the system are $(x, y, z)=(s,-s, s)$ for all real numbers s.
(ii) If $t=2$, then $\left|\mathbf{A}_{t}\right|=-1 \neq 0$ and the system has only the trivial solution $(x, y, z)=(0,0,0)$.
(c) If we both premultiply and postmultiply by \mathbf{B}^{-1} in the equation $\mathbf{B C}=\mathbf{C B}$, we get

$$
\mathbf{B}^{-1}(\mathbf{B C}) \mathbf{B}^{-1}=\mathbf{B}^{-1}(\mathbf{C B}) \mathbf{B}^{-1} \Longleftrightarrow \mathbf{I C B}^{-1}=\mathbf{B}^{-1} \mathbf{C I} \Longleftrightarrow \mathbf{C B}^{-1}=\mathbf{B}^{-1} \mathbf{C},
$$

and the last equation shows that \mathbf{B}^{-1} and \mathbf{C} commute with each other.

Problem 5

By the rule $\ln a^{p}=p \ln a$, we have $\ln f(x)=\frac{1}{\ln \left(e^{x}-1\right)} \ln x=\frac{\ln x}{\ln \left(e^{x}-1\right)}$, and l'Hôpital's rule gives
$\lim _{x \rightarrow 0^{+}} \ln f(x)=" \frac{\infty}{\infty} "=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{e^{x}}{e^{x}-1}}=\lim _{x \rightarrow 0^{+}} \frac{e^{x}-1}{x e^{x}}={ }^{" 0} \frac{"}{0}=\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{e^{x}+x e^{x}}=1$.
It follows that $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} e^{\ln f(x)}=e^{1}=e$.

