ECON3120/4120 Mathematics 2

Tuesday 31 May 2011, 14:30-17:30.
There are 2 pages of problems to be solved.
All printed and written material may be used. Pocket calculators are allowed.
State reasons for all your answers.
Grades given run from A (best) to E for passes, and F for fail.

Problem 1

For every real number t, let $\mathbf{A}_{t}=\left(\begin{array}{ccc}4+t & 2 & 1 \\ 2 & t & 0 \\ 1 & 0 & t\end{array}\right)$.
(a) Show that $\left|\mathbf{A}_{0}\right|=0$. Is $\left|\mathbf{A}_{t}\right|=0$ for any other values of t ?
(b) Find a necessary and sufficient condition on a, b, and c for the following system of equations to have at least one solution:

$$
\begin{aligned}
5 x+2 y+z & =a \\
2 x+y & =b \\
x+z & =c
\end{aligned}
$$

Problem 2

The equation $x y+y^{3}=3$ defines y implicitly as a function $y=\varphi(x)$ around the point $\left(x_{0}, y_{0}\right)=(2,1)$.
(a) Find an expression for $\varphi^{\prime}(x)$.
(b) Find the quadratic approximation to $\varphi(x)$ around $x_{0}=2$.

Problem 3

Consider the differential equation

$$
\begin{equation*}
\dot{x}+\frac{1}{2} x=2-t . \tag{*}
\end{equation*}
$$

(a) Find the general solution of equation $(*)$.
(b) The t-axis (i.e. the straight line $x=0$) is tangent to the graph of one solution of $(*)$. Find the point of tangency and the corresponding solution.

Problem 4

Let F be the function defined by $F(t)=\int_{1}^{t} \frac{2-\ln x}{x^{3}} d x$ for all $t>0$.
(a) Show that F has a maximum point and find the maximum value of F.
(b) Find $\lim _{t \rightarrow \infty} F(t)$ if this limit exists.

Problem 5

Let f be the function defined by

$$
f(x, y)=-x y^{3}-x y^{2}+y-x^{2}
$$

and let S be the set $S=\{(x, y): x>0, x y \geq 1\}$.
(a) Show that f has no stationary point in S.
(b) Find the maximum point or points of $f(x, y)$ over S. You may assume that f has a maximum value over S.

