Answers to the examination problems in ECON3120/4120 Mathematics 2, 31 May 2011

Problem 1

(a) Cofactor expansion along the bottom row yields

$$
\left|\mathbf{A}_{t}\right|=1\left|\begin{array}{ll}
2 & 1 \\
t & 0
\end{array}\right|-0 \cdot(\cdots)+t\left|\begin{array}{cc}
4+t & 2 \\
2 & t
\end{array}\right|=-t+t\left(4 t+t^{2}-4\right)=t^{3}+4 t^{2}-5 t .
$$

It follows that $\left|\mathbf{A}_{0}\right|=0$. To determine all t for which $\left|\mathbf{A}_{t}\right|=0$ we need to solve the cubic equation $t^{3}+4 t^{2}-5 t=0$. We can write the equation as

$$
t\left(t^{2}+4 t-5\right)=0
$$

and it follows that the roots are $t=0$ (which we already know) together with the roots of the quadratic equation $t^{2}+4 t-5=0$, namely $t=1$ and $t=-5$.

Comment: We could of course have tackled $\left|\mathbf{A}_{0}\right|$ directly as $\left|\mathbf{A}_{0}\right|=\left|\begin{array}{lll}4 & 2 & 1 \\ 2 & 0 & 0 \\ 1 & 0 & 0\end{array}\right|$, which is 0 because the last two rows (or the last two columns) are proportional. But we needed the general determinant $\left|\mathbf{A}_{t}\right|$ for the last question anyway.
(b) We use Gaussian elimination:

$$
\begin{aligned}
& \left(\begin{array}{llll}
5 & 2 & 1 & a \\
2 & 1 & 0 & b \\
1 & 0 & 1 & c
\end{array}\right) \longleftarrow \sim\left(\begin{array}{llll}
1 & 0 & 1 & c \\
2 & 1 & 0 & b \\
5 & 2 & 1 & a
\end{array}\right) \longleftarrow{ }^{-2}-5 \\
& \sim\left(\begin{array}{cccc}
1 & 0 & 1 & c \\
0 & 1 & -2 & b-2 c \\
0 & 2 & -4 & a-5 c
\end{array}\right) \stackrel{-2}{\longleftarrow} \sim\left(\begin{array}{cccc}
1 & 0 & 1 & c \\
0 & 1 & -2 & b-2 c \\
0 & 0 & 0 & a-2 b-c
\end{array}\right)
\end{aligned}
$$

It is clear that the last matrix represents a system that has solutions if and only if $a-2 b-c=0$.

Problem 2

(a) Differentiate the equation $x \varphi(x)+\varphi(x)^{3}=3$ with respect to x. That gives

$$
\begin{equation*}
\varphi(x)+x \varphi^{\prime}(x)+3 \varphi(x)^{2} \varphi^{\prime}(x)=0 \tag{1}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\varphi^{\prime}(x)=-\frac{\varphi(x)}{x+3 \varphi(x)^{2}} \tag{2}
\end{equation*}
$$

(b) For the quadratic approximation we need the value of the second derivative $\varphi^{\prime \prime}(x)$ at $x=2$. We can get $\varphi^{\prime \prime}(x)$ by taking the derivative of the fraction in (2), but it is simpler to differentiate the equation (1). We get

$$
\begin{gather*}
\varphi^{\prime}(x)+\varphi^{\prime}(x)+x \varphi^{\prime \prime}(x)+6 \varphi(x) \varphi^{\prime}(x)^{2}+3 \varphi(x)^{2} \varphi^{\prime \prime}(x)=0 \\
\varphi^{\prime \prime}(x)=-\frac{2 \varphi^{\prime}(x)+6 \varphi(x) \varphi^{\prime}(x)^{2}}{x+3 \varphi(x)^{2}} \tag{3}
\end{gather*}
$$

Since $\varphi(2)=1$, it follows from (2) that $\varphi^{\prime}(2)=-1 / 5$, and then (3) gives

$$
\varphi^{\prime \prime}(2)=-\frac{-\frac{2}{5}+\frac{6}{25}}{2+3}=\frac{4}{125} .
$$

The quadratic approximation to $\varphi(x)$ around $x_{0}=2$ is therefore

$$
\varphi(2+h) \approx \varphi(2)+\varphi^{\prime}(2) h+\frac{1}{2} \varphi^{\prime \prime}(2) h^{2}=1-\frac{1}{5} h+\frac{2}{125} h^{2} .
$$

Problem 3

(a) By formula (9.9.5) in EMEA (formula (1.4.5) in MA2), the general solution is

$$
\begin{equation*}
x=C e^{-t / 2}+e^{-t / 2} \int e^{t / 2}(2-t) d t \tag{৫}
\end{equation*}
$$

To evaluate the integral in (Ω) we use integration by parts, integrating the first factor and then differentiating the other factor:

$$
\begin{aligned}
\int e^{t / 2}(2-t) d t & =2 e^{t / 2}(2-t)-\int 2 e^{t / 2}(-1) d t \\
& =4 e^{t / 2}-2 t e^{t / 2}+4 e^{t / 2}=8 e^{t / 2}-2 t e^{t / 2}
\end{aligned}
$$

(the constant of integration is already taken care of in (()).) Thus the general solution of the differential equation is

$$
x=C e^{-t / 2}+e^{-t / 2}\left(8 e^{t / 2}-2 t e^{t / 2}\right)=C e^{-t / 2}+8-2 t
$$

(b) At the point of tangency we must have $x=0$ and $\dot{x}=0$, so the differential equation $\dot{x}+\frac{1}{2} x=2-t$ gives $t=2$. Thus the point of tangency is $(t, x)=(2,0)$.

For a solution to pass through that point, the constant C in (\diamond) must be such that $x(2)=0$. In other words,

$$
0=C e^{-1}+8-4, \quad \text { i.e. } \quad C=-4 e
$$

Thus the solution we are looking for is

$$
x=-4 e^{1-(t / 2)}+8-2 t
$$

Problem 4

(a) We have

$$
F^{\prime}(t)=\frac{2-\ln t}{t^{3}} \begin{cases}>0 & \text { if } 0<t<e^{2} \\ <0 & \text { if } t>e^{2}\end{cases}
$$

Therefore F is strictly increasing on ($\left.0, e^{2}\right]$ and strictly decreasing on $\left[e^{2}, \infty\right)$, so $F(t)$ attains its maximum for $t=e^{2}$.

To find an expression for $F(t)$ we first use integration by parts to find the indefinite integral

$$
\begin{aligned}
G(x) & =\int(2-\ln x) \frac{1}{x^{3}} d x=(2-\ln x)\left(-\frac{1}{2 x^{2}}\right)-\int\left(-\frac{1}{x}\right)\left(-\frac{1}{2 x^{2}}\right) d x \\
& =\frac{\ln x-2}{2 x^{2}}-\frac{1}{2} \int \frac{1}{x^{3}} d x=\frac{\ln x-2}{2 x^{2}}+\frac{1}{4 x^{2}}+C=\frac{2 \ln x-3}{4 x^{2}}+C .
\end{aligned}
$$

It follows that

$$
F(t)=\left.\right|_{1} ^{t} G(x)=\frac{2 \ln t-3}{4 t^{2}}+\frac{3}{4} .
$$

In particular,

$$
F_{\max }=F\left(e^{2}\right)=\frac{2 \cdot 2-3}{4 e^{4}}+\frac{3}{4}=\frac{1}{4 e^{4}}+\frac{3}{4} .
$$

(b) By l'Hôpital's rule for " ∞ / ∞ " forms,

$$
\lim _{t \rightarrow \infty} F(t)=\frac{3}{4}+\lim _{t \rightarrow \infty} \frac{2 \ln t-3}{4 t^{2}} \stackrel{1^{\prime} \text { Hôp }}{=} \frac{3}{4}+\lim _{t \rightarrow \infty} \frac{2 / t}{8 t}=\frac{3}{4}+\lim _{t \rightarrow \infty} \frac{1}{4 t^{2}}=\frac{3}{4} .
$$

Problem 5

(a) The first-order partial derivatives of f are

$$
f_{1}^{\prime}(x, y)=-y^{3}-y^{2}-2 x, \quad f_{2}^{\prime}(x, y)=-3 x y^{2}-2 x y+1
$$

At every point (x, y) in S we have $x>0$ and $x y \geq 1$, so y is also positive. Therefore $f_{1}^{\prime}(x, y)<0$, and f has no stationary point in S. (It is also clear that $f_{2}^{\prime}(x, y)<0$ throughout S, because $f_{2}^{\prime}(x, y)<-2 x y+1 \leq-2+1$.)
(b) Since f has no stationary point in S, the maximum point (or points) must lie on the boundary of S, i.e. on the curve $x y=1$. Along that curve we have

$$
f(x, y)=f(x, 1 / x)=-\frac{x}{x^{3}}-\frac{x}{x^{2}}+\frac{1}{x}-x^{2}=-x^{-2}-x^{2} .
$$

The maximum points $(x, 1 / x)$ for f over $x y=1$ correspond to the maximum points of $g(x)=-x^{-2}-x^{2}$ over $(0, \infty)$. The derivative of g is $g^{\prime}(x)=2 x^{-3}-2 x$ and the stationary points for g are the solutions of the equation

$$
2 x^{-3}-2 x=0 \Longleftrightarrow 2=2 x^{4} \Longleftrightarrow x^{4}=1 \Longleftrightarrow x^{2}=1
$$

The only positive solution is $x=1$. Moreover, g is concave because $g^{\prime \prime}(x)=$ $-6 x^{-4}-2<0$, so $x=1$ is a maximum point (and the only one) for g over $(0, \infty)$. Hence, the unique maximum point for f over S is $(1,1)$.

