ECON3120/ECON4120 Mathematics 2

Thursday December 15 2011, 14:30-17:00
There are 2 pages of problems to be solved.
All printed and written material may be used, as well as pocket calculators.
Grades given run from A (best) to E for passes, and F for fail.
You are required to state reasons for all your answers.

Problem 1 Define for each number t the matrix \mathbf{A}_{t} by

$$
\mathbf{A}_{t}=\left(\begin{array}{lll}
t & 1 & 0 \\
1 & t & 1 \\
0 & 1 & t
\end{array}\right)
$$

(a) Calculate the determinant of \mathbf{A}_{t}.
(b) For which value(s) of t does the equation system

$$
\mathbf{A}_{t} \mathbf{x}=\left(\begin{array}{c}
\sqrt{2} \\
1 \\
\sqrt{2}
\end{array}\right)
$$

have (i) unique solution, (ii) no solution, (iii) several solutions?

Problem 2 Let $a \in(0,1), b \in(0,1), A>0, B>0$ and $k \geq 0$ be constants, and define for nonnegative x, y,

$$
F(x, y)=A x^{a}+B y^{b}+k x y
$$

(a) A level curve $F(x, y)=C(>0)$ will define y as a function of x. Find an expression for the elasticity $\mathrm{El}_{x} y$ in terms of x, y and the constants a, A, b, B, k (i.e., not involving C).
(b) In this part, let $k=0$. Show that the elasticity of substitution between y and x can be written as

$$
\frac{a A x^{a}+b B y^{b}}{a A x^{a}+b B y^{b}-a b F(x, y)}
$$

Problem 3 Define $f(x, y)=x^{4}-x^{2}+y^{2}$, let K be a positive constant, and consider the problem

$$
\begin{equation*}
\min f(x, y) \quad \text { subject to } \quad x^{2}+2 y^{2}=K \tag{P}
\end{equation*}
$$

(a) Explain why (P) has a solution, and state the Lagrange conditions associated to the problem.
(b) Find all points which satisfy the Lagrange conditions with $x \geq 0, y \geq 0$.
(c) The optimum will be one of the points from part (b). The optimal value of $f(x, y)$ is a function $V(K)$. Calculate $V^{\prime}(1)$ in two ways: (i) by means of the Lagrange multiplier, and (ii) by evaluating V and differentiating.

Problem 4 Let $k>0$ be a constant. Consider the differential equation

$$
2 x(t) \dot{x}(t)=\left([x(t)]^{2}+k\right) t e^{2 t}
$$

(a) Find the general solution.
(b) Find the particular solution for which $x(1)=2$.

