ECON3120/4120 Mathematics 2

Tuesday December 11 2012, 09:00-12:00
There are 2 pages of problems to be solved.
All printed and written material may be used, as well as pocket calculators.
Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier letter-enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.

Problem 1 Define for each real number t the matrix \mathbf{A}_{t} by

$$
\mathbf{A}_{t}=\left(\begin{array}{ccc}
1 & 1 & t^{2} \\
3 t & 2 t+18 & 9 t \\
3 & 2 & 0
\end{array}\right)
$$

and the matrix $\mathbf{B}_{t}=e^{t} \mathbf{A}_{t}$.
(a) The determinants of \mathbf{A}_{t} and \mathbf{B}_{t} are of the form $\left|\mathbf{A}_{t}\right|=a(t) \cdot(1-6 t)$, resp. $\left|\mathbf{B}_{t}\right|=$ $b(t) \cdot(1-6 t)$. Find $a(t)$ and $b(t)$.
(b) For which value(s) of t does the equation system (where \mathbf{x} is the unknown)

$$
\mathbf{A}_{t} \mathbf{x}=\left(\begin{array}{r}
6 t-1 \\
12 t-2 \\
18 t-3
\end{array}\right)
$$

have (i) unique solution, (ii) no solution, (iii) several solutions?

Problem 2 Evaluate the following integrals (hint: in both, you have to perform a substitution):

$$
\text { (i) } \int(x+1)^{3} e^{x^{2}+2 x+1} \mathrm{~d} x \quad \text { (ii) } \int_{e^{e}}^{e^{e^{e}}} \frac{\mathrm{~d} y}{y \cdot \ln y \cdot \ln (\ln y)}
$$

Problem 3 Define for $k>0, \ell>0$ the function

$$
f(k, \ell)=\frac{1}{2} k^{1 / 2} \ell^{1 / 3}+\frac{1}{3} k^{1 / 3} \ell^{1 / 2}-(p k+q \ell)
$$

Notice that the equation system $\left(^{*}\right)$ below, states the first-order condition for f to have stationary point at $(k, \ell)=(u, v)$.
(a) It is a fact (and you shall not prove) that the sum of concave functions, is concave. Show that f is concave.

The equation system

$$
\begin{align*}
& \frac{1}{4} u^{-1 / 2} v^{1 / 3}+\frac{1}{9} u^{-2 / 3} v^{1 / 2}=p \\
& \frac{1}{6} u^{1 / 2} v^{-2 / 3}+\frac{1}{6} u^{1 / 3} v^{-1 / 2}=q \tag{*}
\end{align*}
$$

defines u and v as continuously differentiable functions of p and q for $p>0, q>0$. (You are not supposed to prove this.)
(b) Differentiate the equation system (*) (i.e., calculate differentials).
(c) Calculate $\partial u / \partial p$ at the point where $p=13 / 18, q=2 / 3$ and $u=v=1 / 64$.
(d) f has a maximum for $(k, \ell)=(u, v)$. Approximately how much does $f(u, v)$ change if p is increased by $\Delta p=1 / 125$?

Problem 4 Consider the Lagrange problem (L), and the nonlinear programming problem (N):

$$
\begin{array}{ll}
\max e^{x-1}+e^{y-2}+e^{z-3} & \text { subject to } \quad 15 x^{2}+12 y^{2}+10 z^{2}=900 \\
\max e^{x-1}+e^{y-2}+e^{z-3} & \text { subject to } \quad\left\{\begin{array}{l}
15 x^{2}+12 y^{2}+10 z^{2}=900 \\
x \geq 0, \quad y \geq 0, \quad z \geq 0
\end{array}\right. \tag{N}
\end{array}
$$

(a) State the Lagrange conditions associated with problem (L), and show that they are satisfied for the point $(x, y, z)=(4,5,6)$.
(b) Does $(x, y, z)=(4,5,6)$ satisfy the Kuhn-Tucker conditions associated to problem (N)?
(c) For each of the problems (L) and (N): Is it clear that a solution exists?
(d) You can assume without proof that $(x, y, z)=(4,5,6)$ solves problem (L). If problem (L) is modified by replacing 900 by 898 , how much, approximately, does the optimal value change?

