ECON3120/4120 Mathematics 2

June 4 2013, 09:00-12:00
There are 2 pages of problems to be solved.
All printed and written material may be used, as well as pocket calculators.
Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier letter-enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.

Problem 1 Define for each real number t the matrix \mathbf{A}_{t} and the vector \mathbf{b}_{t} by

$$
\mathbf{A}_{t}=\left(\begin{array}{ccc}
t & 3 & 0 \\
1 & t+1 & 3 \\
0 & 1 & t
\end{array}\right) \quad \text { and } \quad \mathbf{b}_{t}=\left(\begin{array}{c}
t \\
t^{2} \\
t^{3}
\end{array}\right)
$$

(a) (i) Find real numbers p, q such that $\mathbf{A}_{s}+\mathbf{A}_{t}=p \mathbf{A}_{q}$.
(ii) Calculate the determinant of \mathbf{A}_{t}.
(b) Find those t for which there is a solution (one or more!) of the equation system

$$
\mathbf{A}_{t} \mathbf{x}=\mathbf{b}_{t}
$$

(where $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)^{\prime}$ is the unknown vector.)
(c) Is there any t such that the equation system

$$
\mathbf{A}_{t}^{2013} \mathbf{x}=\mathbf{b}_{t}
$$

has infinitely many solutions? (\mathbf{A}_{t}^{2013} denotes the 2013th power.)

Problem 2 Consider the function $F(t)=t^{t}-\frac{1}{\sqrt[3]{3}}$ defined for $t>0$.
(a) Show that

$$
\int t^{t}(1+\ln t) d t=F(t)+C
$$

and use this to find

$$
\int_{0}^{\ln 2}(z+1) e^{z\left(1+e^{z}\right)} d z
$$

(Hint: for the latter, use the substitution $t=e^{z}$.)
(b) How many zeroes does F have?
(You are not asked to calculate any, but observe that $F(1 / 3)=0$ and that $F^{\prime}(1 / 3)<0$.)
(c) Use part (a) to find the particular solution which passes through $\left(t_{0}, x_{0}\right)=(2,2)$ of the differential equation

$$
3 \dot{x}(t)=\frac{t^{t}(1+\ln t)}{(x(t))^{2}}
$$

Problem 3 Let N be a positive integer (i.e. $1,2, \ldots$) and let f be the function

$$
f(x, y)=x y^{N+1}-(x+1) \ln (x+1)
$$

defined for $x>-1$, all y.
(a) Find and classify the stationary points of f.
(b) Does f have any global maximum or minimum?

In the following, consider the problem

$$
\max f(x, y) \quad \text { subject to } \quad\left\{\begin{array}{l}
x \geq 0 \tag{P}\\
y \geq 0 \\
y \leq 1-x
\end{array}\right.
$$

(c) Decide whether this problem has a solution or not, and state the associated KuhnTucker conditions.
(d) Put $x=0$ in the Kuhn-Tucker conditions. For what $y \in[0,1]$ will the Kuhn-Tucker conditions be satisfied for the point $(0, y)$?
(e) Show that the Kuhn-Tucker conditions cannot be satisfied when $0<x<1-y$.

