University of Oslo / Department of Economics / NCF

ECON3120/4120 Mathematics 2 - on the 2013-06-04 exam (draft)

- This note is not suited as a complete solution or as a template for an exam paper. It was written as guidance for the grading process.
- Weighting: assigned at the grading committee's discretion. (In case of appeals: the new grading committee assigns weighting at their discretion.) The problem set was written with the intention that a uniform weighting over letter-enumerated items should be a possible choice.

Problem 1 Define for each real number t the matrix \mathbf{A}_{t} and the vector \mathbf{b}_{t} by

$$
\mathbf{A}_{t}=\left(\begin{array}{ccc}
t & 3 & 0 \\
1 & t+1 & 3 \\
0 & 1 & t
\end{array}\right) \quad \text { and } \quad \mathbf{b}_{t}=\left(\begin{array}{c}
t \\
t^{2} \\
t^{3}
\end{array}\right)
$$

(a) (i) Find real numbers p, q such that $\mathbf{A}_{s}+\mathbf{A}_{t}=p \mathbf{A}_{q}$.
(ii) Calculate the determinant of \mathbf{A}_{t}.
(b) Find those t for which there is a solution (one or more!) of the equation system

$$
\mathbf{A}_{t} \mathbf{x}=\mathbf{b}_{t}
$$

(where $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)^{\prime}$ is the unknown vector.)
(c) Is there any t such that the equation system

$$
\mathbf{A}_{t}^{2013} \mathbf{x}=\mathbf{b}_{t}
$$

has infinitely many solutions? (\mathbf{A}_{t}^{2013} denotes the 2013th power.)

On the solution:

(a) (i) The off-diagonal elements match if and only if $\underline{p=2}$. With $p=2$, put $q=(s+t) / 2$ and the diagonal elements match too.
(ii) Cofactor expansion, e.g. by first column, yields (notice the minus in front of the 1): $t \cdot[t(t+1)-3]-1 \cdot[3 t-0]=\underline{\underline{t^{3}+t^{2}-6 t}}$.
(b) There is a solution when the determinant is nonzero, and also (with $\mathbf{x}=\mathbf{0}$) when $t=0$. The other zeroes of the determinant are when $t^{2}+t-6=0$ i.e. $t=-3$, $t=2$.
For the case $t=-3$, Gaussian elimination yields

$$
\left(\begin{array}{ccccc}
-3 & 3 & 0 & \vdots & -3 \\
1 & -2 & 3 & \vdots & 9 \\
0 & 1 & -3 & \vdots & -27
\end{array}\right) \sim\left(\begin{array}{ccccc}
-1 & 1 & 0 & \vdots & -1 \\
0 & -1 & 3 & \vdots & 8 \\
0 & 1 & -3 & \vdots & -27
\end{array}\right)
$$

by scaling the first by $1 / 3$ and then adding it to the second. Add the second and third for a contradiction.
For the case $t=2$:

$$
\left(\begin{array}{lllll}
2 & 3 & 0 & \vdots & 2 \\
1 & 3 & 3 & \vdots & 4 \\
0 & 1 & 2 & \vdots & 8
\end{array}\right)
$$

Subtract twice the second from the first to get the first row: $(0-3-6 \vdots-6)$ which contradicts the third.
So the system has solution when $\underline{\underline{\notin\{ }\{-3,2\}}$.
(c) Yes, for $t=0:\left|\mathbf{A}_{t}^{2013}\right|=\left|\mathbf{A}_{t}\right|^{2013}$, so we must necessarily have $\left|\mathbf{A}_{t}\right|=0$. When $t=0$ we have zero determinant, and we have at least one solution (the null) and thus infinitely many.

Problem 2 Consider the function $F(t)=t^{t}-\frac{1}{\sqrt[3]{3}}$ defined for $t>0$.
(a) Show that

$$
\int t^{t}(1+\ln t) d t=F(t)+C
$$

and use this to find

$$
\int_{0}^{\ln 2}(z+1) e^{z\left(1+e^{z}\right)} d z
$$

(Hint: for the latter, use the substitution $t=e^{z}$.)
(b) How many zeroes does F have?
(You are not asked to calculate any, but observe that $F(1 / 3)=0$ and that $F^{\prime}(1 / 3)<0$.)
(c) Use part (a) to find the particular solution which passes through $\left(t_{0}, x_{0}\right)=(2,2)$ of the differential equation

$$
3 \dot{x}(t)=\frac{t^{t}(1+\ln t)}{(x(t))^{2}}
$$

On the solution:

(a) For the first part: $F^{\prime}(t)=\left(t^{t}\right)^{\prime}$ which has been covered in the lecture: solve either as u^{v} by the chain rule, or from $t^{t}=e^{t \ln t}$ or by the formula $G^{\prime}(t)=G(t)(\ln G(t))^{\prime}$. In all cases, we end up at $F^{\prime}(t)=t^{t}(1+\ln t)$ which is the integrand.
With $t=e^{z}$ we have $d t=e^{z} d z$, taking out the «1» in the exponent:

$$
\int(z+1) e^{z\left(1+e^{z}\right)} d z=\int(\ln t+1) t^{t} d t=t^{t}+C=e^{z e^{z}}+C
$$

so that the definite integral is $2^{2}-e^{0}=\underline{\underline{3}}$.
Note: The students should know that if they substitute in definite integrals, they must substitute the limits too.
(b) We have that F^{\prime} has a zero for $t=1 / e$, is <0 on $(0,1 / e)$ and >0 on $(1 / e, \infty)$. So there is at most one zero in each of these intervals. In $(0,1 / e)$ there is one, namely for $t=1 / 3$. In $(1 / e, \infty)$ there is also one, by the intermediate value theorem; as F decreases from zero at $t=1 / 3$ to $t=1 / e$, we have $F(1 / e)<0-$ and $F \rightarrow+\infty$ as $t \rightarrow+\infty$. So the answer is two zeroes.
(c) Separate: $3 x^{2} d x=t^{t}(1+\ln t) d t$ and integrate: $x^{3}=t^{t}+C$ (using part (a)). Find $C=2^{3}-2^{2}=4$. Solution: $x(t)=\sqrt[3]{t^{t}+4}$

Problem 3 Let N be a positive integer (i.e. $1,2, \ldots$) and let f be the function

$$
f(x, y)=x y^{N+1}-(x+1) \ln (x+1)
$$

defined for $x>-1$, all y.
(a) Find and classify the stationary points of f.
(b) Does f have any global maximum or minimum?

In the following, consider the problem

$$
\max f(x, y) \quad \text { subject to } \quad\left\{\begin{array}{l}
x \geq 0 \tag{P}\\
y \geq 0 \\
y \leq 1-x
\end{array}\right.
$$

(c) Decide whether this problem has a solution or not, and state the associated KuhnTucker conditions.
(d) Put $x=0$ in the Kuhn-Tucker conditions. For what $y \in[0,1]$ will the Kuhn-Tucker conditions be satisfied for the point $(0, y)$?
(e) Show that the Kuhn-Tucker conditions cannot be satisfied when $0<x<1-y$.

On the solution:

(a) We have

$$
\begin{aligned}
& f_{x}^{\prime}(x, y)=y^{N+1}-\ln (x+1)-1 \\
& f_{y}^{\prime}(x, y)=(N+1) x y^{N}
\end{aligned}
$$

and $f_{y}^{\prime}=0$ if and only if $x y=0$. For $x=0$: stationary point $(x, y)=\underline{\underline{(0,1)}}$.
For $y=0$: stationary point where $\ln (x+1)=-1$, i.e. $(x, y)=\underline{\underline{\left(\frac{1}{e}-1,0\right)}}$.
To classify, we have

$$
\begin{aligned}
f_{x x}^{\prime}(x, y) & =-\frac{1}{x+1} \quad(<0) \\
f_{x y}^{\prime}(x, y) & =(N+1) y^{N} \\
f_{y y}^{\prime}(x, y) & =N(N+1) x y^{N-1}
\end{aligned}
$$

For $(x, y)=(0,1)$, the latter vanishes and the Hessian is negative: saddle point. For $(x, y)=\left(\frac{1}{e}-1,0\right)$, the mixed derivative vanishes, and so does $\overline{f_{y y}^{\prime \prime} \text { except when }}$ $N=1$ when it is negative: local maximum for $N=1$, no conclusion otherwise.

Note: The above «no conclusion» answer is fully accepted as the candidates are only expected to classify with the standard tool of the course - that was clarified explicitely at the beginning of the exam.
The punctured-neighbourhood version cannot be required, and neither can the following argument (but it is allowed and can even replace the 2nd derivative test):

- For N even, f is strictly monotone in y for all $x \neq 0$, hence $(x, y)=\left(\frac{1}{e}-1,0\right)$ is a saddle point.
- For N odd and $x \leq 0$, we have $f(x, y) \leq f(x, 0)=-(x+1) \ln (x+1)$ with maximum for $x=\frac{1}{e}-1$ (as $\left.f_{x x}^{\prime}<0\right)$. (This is not a global maximum, only over $x \leq 0$.)
(b) No: Fix an $x \neq 0$ and let $y \rightarrow+\infty$. Then $f \rightarrow+\infty \cdot \operatorname{sign}(x)$.
(c) Yes, by the extreme value theorem: The constraints form a closed, bounded (nonempty) set, where f is continuous.
Define the Lagrangian $L(x, y)=f(x, y)-\lambda(x+y-1)+\alpha x+\beta y$ (goes with/without explicitely rewriting the constraints as $-x \leq 0,-y \leq 0, x+y \leq 1)$. Conditions:

$$
\begin{align*}
y^{N+1}-\ln (x+1)-1 & =\lambda-\alpha \tag{1}\\
(N+1) x y^{N} & =\lambda-\beta \tag{2}\\
\lambda & \geq 0 \quad \text { and } \lambda=0 \text { if } x+y<1 \tag{3}\\
\alpha & \geq 0 \quad \text { and } \alpha=0 \text { if } x>0 \tag{4}\\
\beta & \geq 0 \quad \text { and } \beta=0 \text { if } y>0 \tag{5}
\end{align*}
$$

(In addition, the constraints must be satisfied; it is OK to include those in the «Kuhn-Tucker conditions» even though the book does not.)
(d) With $x=0$, the stationarity conditions are

$$
\begin{aligned}
y^{N+1}-1 & =\lambda-\alpha \\
\beta & =\lambda
\end{aligned}
$$

and the Kuhn-Tucker conditions are satisfied with $\lambda=\beta=0$ and $\alpha=1-y^{N+1} \geq 0$ for all $y \in[0,1]$.
(Note: It is OK to just (guess and) state $\lambda=\beta=0$ and then verify the nonnegativity for α. While it easily follows that we must have $\lambda=\beta=0$, the candidates cannot be required to justify that claim, as it is easy to see that it fits once the suggested α is nonnegative.)
(e) When $x>0$ and $x+y<1$, we have $\alpha=\lambda=0$. By (2), we must also have $\beta=0$ as the left-hand side is nonnegative. Hence we must have a stationary point, and from part (a), the only admissible is $(0,1)$ - which violates (even both inequalities of) the assumption $0<x<1-y$.

