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ECON3120/4120 Mathematics 2 – on the 2013–06–04 exam (draft)

• This note is not suited as a complete solution or as a template for an exam paper. It
was written as guidance for the grading process.

• Weighting: assigned at the grading committee’s discretion. (In case of appeals: the
new grading committee assigns weighting at their discretion.) The problem set was
written with the intention that a uniform weighting over letter-enumerated items
should be a possible choice.

Problem 1 Define for each real number t the matrix At and the vector bt by

At =





t 3 0
1 t+ 1 3
0 1 t



 and bt =





t
t2

t3





(a) (i) Find real numbers p, q such that As +At = pAq.

(ii) Calculate the determinant of At.

(b) Find those t for which there is a solution (one or more!) of the equation system

At x = bt

(where x = (x1, x2, x3)
′ is the unknown vector.)

(c) Is there any t such that the equation system

A
2013
t x = bt

has infinitely many solutions? (A2013
t denotes the 2013th power.)

1



On the solution:

(a) (i) The off-diagonal elements match if and only if p = 2. With p = 2, put
q = (s+ t)/2 and the diagonal elements match too.

(ii) Cofactor expansion, e.g. by first column, yields (notice the minus in front of
the 1): t · [t(t+ 1)− 3]− 1 · [3t− 0] = t3 + t2 − 6t.

(b) There is a solution when the determinant is nonzero, and also (with x = 0) when
t = 0. The other zeroes of the determinant are when t2 + t − 6 = 0 i.e. t = −3,
t = 2.
For the case t = −3, Gaussian elimination yields









−3 3 0
... −3

1 −2 3
... 9

0 1 −3
... −27









∼









−1 1 0
... −1

0 −1 3
... 8

0 1 −3
... −27









by scaling the first by 1/3 and then adding it to the second. Add the second and
third for a contradiction.
For the case t = 2:









2 3 0
... 2

1 3 3
... 4

0 1 2
... 8









Subtract twice the second from the first to get the first row: (0 − 3 − 6
... − 6)

which contradicts the third.
So the system has solution when t 6∈ {−3, 2}.

(c) Yes, for t = 0: |A2013
t | = |At|2013, so we must necessarily have |At| = 0. When t = 0

we have zero determinant, and we have at least one solution (the null) and thus
infinitely many.
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Problem 2 Consider the function F (t) = tt − 1
3
√
3

defined for t > 0.

(a) Show that
∫

tt(1 + ln t) dt = F (t) + C

and use this to find
∫ ln 2

0

(z + 1)ez(1+ez) dz.

(Hint: for the latter, use the substitution t = ez.)

(b) How many zeroes does F have?
(You are not asked to calculate any, but observe that F (1/3) = 0 and that F ′(1/3) < 0.)

(c) Use part (a) to find the particular solution which passes through (t0, x0) = (2, 2) of
the differential equation

3ẋ(t) =
tt(1 + ln t)
(

x(t)
)2

On the solution:

(a) For the first part: F ′(t) = (tt)′ which has been covered in the lecture: solve either
as uv by the chain rule, or from tt = et ln t or by the formula G′(t) = G(t)(lnG(t))′.
In all cases, we end up at F ′(t) = tt(1 + ln t) which is the integrand.
With t = ez we have dt = ezdz, taking out the «1» in the exponent:

∫

(z + 1)ez(1+ez) dz =

∫

(ln t+ 1)ttdt = tt + C = eze
z

+ C

so that the definite integral is 22 − e0 = 3.

Note: The students should know that if they substitute in definite integrals, they
must substitute the limits too.

(b) We have that F ′ has a zero for t = 1/e, is < 0 on (0, 1/e) and > 0 on (1/e,∞). So
there is at most one zero in each of these intervals. In (0, 1/e) there is one, namely
for t = 1/3. In (1/e,∞) there is also one, by the intermediate value theorem; as F
decreases from zero at t = 1/3 to t = 1/e, we have F (1/e) < 0 – and F → +∞ as
t → +∞. So the answer is two zeroes.

(c) Separate: 3x2 dx = tt(1 + ln t) dt and integrate: x3 = tt + C (using part (a)). Find
C = 23 − 22 = 4. Solution: x(t) =

3
√
tt + 4
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Problem 3 Let N be a positive integer (i.e. 1, 2, ...) and let f be the function

f(x, y) = xyN+1 − (x+ 1) ln(x+ 1)

defined for x > −1, all y.

(a) Find and classify the stationary points of f .

(b) Does f have any global maximum or minimum?

In the following, consider the problem

max f(x, y) subject to











x ≥ 0

y ≥ 0

y ≤ 1− x

(P)

(c) Decide whether this problem has a solution or not, and state the associated Kuhn–
Tucker conditions.

(d) Put x = 0 in the Kuhn–Tucker conditions. For what y ∈ [0, 1] will the Kuhn–Tucker
conditions be satisfied for the point (0, y)?

(e) Show that the Kuhn–Tucker conditions cannot be satisfied when 0 < x < 1− y.

On the solution:

(a) We have

f ′

x(x, y) = yN+1 − ln(x+ 1)− 1

f ′

y(x, y) = (N + 1)xyN

and f ′

y = 0 if and only if xy = 0. For x = 0: stationary point (x, y) = (0, 1).

For y = 0: stationary point where ln(x+ 1) = −1, i.e. (x, y) = (1
e
− 1, 0).

To classify, we have

f ′

xx(x, y) = − 1

x+ 1
(< 0)

f ′

xy(x, y) = (N + 1)yN

f ′

yy(x, y) = N(N + 1)xyN−1

For (x, y) = (0, 1), the latter vanishes and the Hessian is negative: saddle point.
For (x, y) = (1

e
− 1, 0), the mixed derivative vanishes, and so does f ′′

yy except when
N = 1 when it is negative: local maximum for N = 1, no conclusion otherwise.
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Note: The above «no conclusion» answer is fully accepted as the candidates are
only expected to classify with the standard tool of the course – that was clarified
explicitely at the beginning of the exam.
The punctured-neighbourhood version cannot be required, and neither can the
following argument (but it is allowed and can even replace the 2nd derivative test):

• For N even, f is strictly monotone in y for all x 6= 0, hence (x, y) = (1
e
− 1, 0)

is a saddle point.

• For N odd and x ≤ 0, we have f(x, y) ≤ f(x, 0) = −(x + 1) ln(x + 1) with
maximum for x = 1

e
− 1 (as f ′

xx < 0). (This is not a global maximum, only
over x ≤ 0.)

(b) No: Fix an x 6= 0 and let y → +∞. Then f → +∞ · sign(x).

(c) Yes, by the extreme value theorem: The constraints form a closed, bounded
(nonempty) set, where f is continuous.
Define the Lagrangian L(x, y) = f(x, y)−λ(x+y−1)+αx+βy (goes with/without
explicitely rewriting the constraints as −x ≤ 0, −y ≤ 0, x+ y ≤ 1). Conditions:

yN+1 − ln(x+ 1)− 1 = λ− α (1)

(N + 1)xyN = λ− β (2)

λ ≥ 0 and λ = 0 if x+ y < 1 (3)

α ≥ 0 and α = 0 if x > 0 (4)

β ≥ 0 and β = 0 if y > 0 (5)

(In addition, the constraints must be satisfied; it is OK to include those in the
«Kuhn–Tucker conditions» even though the book does not.)

(d) With x = 0, the stationarity conditions are

yN+1 − 1 = λ− α

β = λ

and the Kuhn–Tucker conditions are satisfied with λ = β = 0 and α = 1−yN+1 ≥ 0
for all y ∈ [0, 1].
(Note: It is OK to just (guess and) state λ = β = 0 and then verify the nonnega-
tivity for α. While it easily follows that we must have λ = β = 0, the candidates
cannot be required to justify that claim, as it is easy to see that it fits once the
suggested α is nonnegative.)

(e) When x > 0 and x + y < 1, we have α = λ = 0. By (2), we must also have β = 0
as the left-hand side is nonnegative. Hence we must have a stationary point, and
from part (a), the only admissible is (0, 1) – which violates (even both inequalities
of) the assumption 0 < x < 1− y.
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