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ECON3120/4120 Mathematics 2 — on the 2013-06—-04 exam (draft)

e This note is not suited as a complete solution or as a template for an exam paper. It
was written as guidance for the grading process.

e Weighting: assigned at the grading committee’s discretion. (In case of appeals: the
new grading committee assigns weighting at their discretion.) The problem set was
written with the intention that a uniform weighting over letter-enumerated items
should be a possible choice.

Problem 1 Define for each real number ¢ the matrix A; and the vector b; by

t 3 0 t
At = 1 t -+ ]. 3 and bt = t2
0 1 t 3

(a) (i) Find real numbers p, ¢ such that A, + A, = pA,.
(ii) Calculate the determinant of A,.

(b) Find those t for which there is a solution (one or more!) of the equation system
A, x=Dhb
(where x = (z1, z2, x3)" is the unknown vector.)
(c) Is there any t such that the equation system
A2 ¢ — 1,

has infinitely many solutions? (A2?9'3 denotes the 2013th power.)



On the solution:

(a)

(b)

(i) The off-diagonal elements match if and only if p=2. With p = 2, put
g = (s 4 t)/2 and the diagonal elements match too.

(ii) Cofactor expansion, e.g. by first column, yields (notice the minus in front of
the 1): ¢+ [t(t+1) —3] —1-[3t — 0] = £2 + > — 6.

There is a solution when the determinant is nonzero, and also (with x = 0) when
t = 0. The other zeroes of the determinant are when > +¢t — 6 = 0 ie. t = —3,
t=2.

For the case t = —3, Gaussian elimination yields
-3 3 0 : =3 -1 1 0 : -1
1 -2 3 : 9 ~10 -1 3 : 8
0o 1 -3 : =27 0 1 =3 : =27

by scaling the first by 1/3 and then adding it to the second. Add the second and
third for a contradiction.
For the case t = 2:

2 30 : 2
1 33 : 4
012 :8

Subtract twice the second from the first to get the first row: (0 —3 —6: — 6)
which contradicts the third.
So the system has solution when ¢t & {—3.2}.

Yes, for t = 0: |AZ°13| = | A;|?*'3, so we must necessarily have |A;| = 0. When t = 0

we have zero determinant, and we have at least one solution (the null) and thus
infinitely many.




1
Problem 2 Consider the function F'(t) = t' — —= defined for ¢ > 0.

V3
(a) Show that

/tt(l +1Int)dt = F(t)+C
and use this to find

In2
/ (z+1)e*Fe) gz,
0
(Hint: for the latter, use the substitution t = e*.)

b) How many zeroes does F' have?
Y
(You are not asked to calculate any, but observe that F'(1/3) = 0 and that F'(1/3) < 0.)

(c) Use part (a) to find the particular solution which passes through (¢g,x¢) = (2,2) of
the differential equation
t'(1+1Int
3i(t) = L0
((t))

On the solution:

(a) For the first part: F'(¢t) = (')’ which has been covered in the lecture: solve either
as u® by the chain rule, or from ' = €' or by the formula G'(t) = G(t)(In G(t))’.
In all cases, we end up at F'(t) = t*(1 + Int) which is the integrand.
With ¢ = e* we have dt = e*dz, taking out the «1» in the exponent:

/(z + 1)e*1+e) gz = /(lnt + Dtfdt =t +C =e* + C

so that the definite integral is 2% — ¢ = 3.

Note: The students should know that if they substitute in definite integrals, they
must substitute the limits too.

(b) We have that F” has a zero for t = 1/e, is <0 on (0,1/e) and > 0 on (1/e,0). So
there is at most one zero in each of these intervals. In (0,1/e) there is one, namely
for t =1/3. In (1/e, 00) there is also one, by the intermediate value theorem; as F
decreases from zero at t = 1/3 tot = 1/e, we have F(1/e) < 0 — and F — 400 as
t — 4+00. So the answer is two zeroes.

(c) Separate: 322 dz = t'(1 + Int) dt and integrate: 2* = t' + C' (using part (a)). Find
C = 2% — 22 = 4. Solution: z(t) = V' +4




Problem 3 Let N be a positive integer (i.e. 1,2,...) and let f be the function
fla,y) =y — (z + D ln(z + 1)

defined for x > —1, all y.

(a) Find and classify the stationary points of f.

(b) Does f have any global maximum or minimum?

In the following, consider the problem

x>0
max f(z,y) subject to y>0 (P)
y<l-u

(c) Decide whether this problem has a solution or not, and state the associated Kuhn—
Tucker conditions.

(d) Put x = 0 in the Kuhn-Tucker conditions. For what y € [0, 1] will the Kuhn-Tucker
conditions be satisfied for the point (0,y)?

(e) Show that the Kuhn—Tucker conditions cannot be satisfied when 0 < x < 1 — y.

On the solution:

(a) We have

folzy) =y —In(z+1) -1
fo(z,y) = (N + 1)ay™

Y

and f, = 0 if and only if 2y = 0. For x = 0: stationary point (z,y)

= (0,1).
For y = 0: stationary point where In(z + 1) = —1, i.e. (z,y) = (2 — 1,0).

€

To classify, we have

1
frlep=-—s  (<0)

fay(@,y) = (N + 1)y™

fop(@y) = N(N + Dy

For (z,y) = (0,1), the latter vanishes and the Hessian is negative: saddle point.
For (z,y) = (+ —1,0), the mixed derivative vanishes, and so does f], except when
N =1 when it is negative: local maximum for N = 1. no conclusion otherwise.




(b)
()

Note: The above «no conclusion» answer is fully accepted as the candidates are
only expected to classify with the standard tool of the course — that was clarified
explicitely at the beginning of the exam.

The punctured-neighbourhood version cannot be required, and neither can the
following argument (but it is allowed and can even replace the 2nd derivative test):

e For N even, f is strictly monotone in y for all z # 0, hence (z,y) = (£ —1,0)
is a saddle point.

e For N odd and = < 0, we have f(z,y) < f(x,0) = —(z + 1) In(x + 1) with
maximum for z = 1 — 1 (as f,, < 0). (This is not a global maximum, only
over z < 0.)

No: Fix an 2 # 0 and let y — +o0. Then f — +oc0 - sign(z).
es

Yes, by the extreme value theorem: The constraints form a closed, bounded

(nonempty) set, where f is continuous.
Define the Lagrangian L(x,y) = f(x,y)—Max+y—1)+az+ Py (goes with /without
explicitely rewriting the constraints as —z < 0, —y < 0, x +y < 1). Conditions:
yV —In(z+1)-1=)—a (1)

(N + 1)y = A= B @)

A>0 and A\=0ifz+y<1 (3)

a>0 anda=0ifz>0 (4)

8>0 and 5 =0ify >0 (5)

(In addition, the constraints must be satisfied; it is OK to include those in the
«Kuhn-Tucker conditions» even though the book does not.)

With x = 0, the stationarity conditions are
YVl 1 =) -«
p=A
and the Kuhn-Tucker conditions are satisfied with A = 3 =0and o = 1 —yV ! > 0
for all y € [0, 1].
(Note: It is OK to just (guess and) state A = f = 0 and then verify the nonnega-
tivity for a. While it easily follows that we must have A = g = 0, the candidates

cannot be required to justify that claim, as it is easy to see that it fits once the
suggested « is nonnegative.)

When x > 0 and x + y < 1, we have o« = A = 0. By (2), we must also have § = 0
as the left-hand side is nonnegative. Hence we must have a stationary point, and
from part (a), the only admissible is (0, 1) — which violates (even both inequalities
of) the assumption 0 <z <1 —y.




