ECON3120/4120 Mathematics 2

December 10th 2013, 1430-1730.
There are 2 pages of problems to be solved.
All printed and written material may be used, as well as pocket calculators.
Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier letter-enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.

Problem 1 In this problem, let t be a constant and consider the linear equation system $\mathbf{A}_{t} \mathbf{x}=\mathbf{b}$ in the unknown vector \mathbf{x}, where

$$
\mathbf{A}_{t}=\left(\begin{array}{ccc}
12-3 t & 2 & 2 \\
1 & 0 & 2 \\
12 & 2-t & 2-t
\end{array}\right), \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{c}
2 \\
0 \\
12
\end{array}\right)
$$

(a) Find q such that \mathbf{A}_{t} has determinant equal to $q \cdot t(t-6)$.
(b) For what values of the constant t will the equation system $\mathbf{A}_{t} \mathbf{x}=\mathbf{b}$ have (i) unique solution, (ii) no solution, (iii) several solutions?

Problem 2 Let $p>0$ be a constant and let $g(x)=(2 x+p) e^{-p x}+p x e^{-2 p x}$.
(a) (i) Find $\lim _{x \rightarrow-\infty} g(x)$ or show that it does not exist.
(ii) Show that $\lim _{x \rightarrow+\infty} g(x)=0$.
(b) Show that there exists an $\hat{x}<0$ such that $g(\hat{x})=0$.
(c) Find $\int g(x) d x$ and decide whether $\int_{p}^{\infty} g(x) d x$ converges.

Problem 3 Let r be a positive constant. Consider the problem

$$
\text { minimize } e^{2 y+(1-2 r) x-r}-\ln (x+y+r / 2) \quad \text { subject to } \quad x+2 y=r
$$

Write out the associated Lagrange conditions, and show that they are equivalent to

$$
2 r(x+2 r) e^{-2 r x}+1=0
$$

(Hint: Eliminate the multiplier and then y.)

Problem 4

(a) (i) Show that

$$
\int[2 t(\ln t-1)-\ln t] e^{-2 t} \mathrm{~d} t=t(1-\ln t) e^{-2 t}+C
$$

(ii) Show that $t \cdot(1-\ln t)$ is a particular solution of the differential equation

$$
\begin{equation*}
\dot{x}(t)=2 x(t)+2 t(\ln t-1)-\ln t, \quad t>0 \tag{*}
\end{equation*}
$$

(b) Find the general solution of the differential equation (*). (Hint: Use part (a).)
(c) One particular solution of $(*)$ passes through the point where $(t, x)=(1,3)$. Find the equation for the tangent line at that point.

Problem 5 An exam problem in ECON5155 in December 2012, led to an equation system of the form

$$
\begin{aligned}
\left(e^{t u}+e^{-t u}\right) v-u+s & =0 \\
\left(e^{t u}-e^{-t u}\right) t v & =1
\end{aligned}
$$

which defines u and v as continuously differentiable functions of s and t around the point P where $s=-2(e+3) /(e-1), t=1 / 4, u=2$ and $v=4 \sqrt{e} /(e-1)$. (You are not supposed to show this.)
(a) Differentiate the equation system (i.e. calculate differentials).
(b) Use the differentiated system to find the value of $\partial u / \partial s$ at P.
(You are required to use the differentiated system, even though there might be other methods.)

