ECON3120/4120 Mathematics $\mathbf{2}$ - on the 2013-12-10 exam (draft)

- This note is not suited as a complete solution or as a template for an exam paper. It was written as guidance for the grading process.
- Weighting: assigned at the grading committee's discretion. (In case of appeals: the new grading committee assigns weighting at their discretion.) The problem set was written with the intention that a uniform weighting over letter-enumerated items should be a possible choice.

Problem 1 In this problem, let t be a constant and consider the linear equation system $\mathbf{A}_{t} \mathbf{x}=\mathbf{b}$ in the unknown vector \mathbf{x}, where

$$
\mathbf{A}_{t}=\left(\begin{array}{ccc}
12-3 t & 2 & 2 \\
1 & 0 & 2 \\
12 & 2-t & 2-t
\end{array}\right), \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{c}
2 \\
0 \\
12
\end{array}\right) .
$$

(a) Find q such that \mathbf{A}_{t} has determinant equal to $q \cdot t(t-6)$.
(b) For what values of the constant t will the equation system $\mathbf{A}_{t} \mathbf{x}=\mathbf{b}$ have (i) unique solution, (ii) no solution, (iii) several solutions?

On the solution:

(a) Cofactor expansion along the second row yields (note the negative signs!)

$$
\begin{aligned}
-1\left|\begin{array}{cc}
2 & 2 \\
2-t & 2-t
\end{array}\right|-2\left|\begin{array}{cc}
12-3 t & 2 \\
12 & 2-t
\end{array}\right| & =0-2\left(24-12 t-6 t+3 t^{2}-24\right) \\
& =-2 t(3 t-18) \quad \text { so that } q=-6
\end{aligned}
$$

(Note: it would simplify to subtract the first row from the third (or vice versa), or the second column from the third (or vice versa); in the latter case it immediately follows that only the mid-right cofactor contributes, but this also follows from the vanishing first term above.)
(b) - From (a) it follows that we have unique solution if and only if $q \notin\{0,6\}$.

- For the case $t=0$, the first and third equation contradict, i.e. no solution.
- Also for the case $t=6$, the first and third equation contradict (add twice the first to the third). No solution.

Problem 2 Let $p>0$ be a constant and let $g(x)=(2 x+p) e^{-p x}+p x e^{-2 p x}$.
(a) (i) Find $\lim _{x \rightarrow-\infty} g(x)$ or show that it does not exist.
(ii) Show that $\lim _{x \rightarrow+\infty} g(x)=0$.
(b) Show that there exists an $\hat{x}<0$ such that $g(\hat{x})=0$.
(c) Find $\int g(x) d x$ and decide whether $\int_{p}^{\infty} g(x) d x$ converges.

On the solution:

(a) (i) $p>0$, so as $x \rightarrow-\infty$ both terms tend to $(-\infty) \cdot(+\infty)=\underline{\underline{-\infty}}$.
(ii) As $x \rightarrow+\infty$, both terms are polynomial growth times exponential decay, and therefore tend to 0 .
(b) From (a)(i), $g<0$ for all sufficiently negative x. On the other hand $g(0)=p e^{0}+0>$ 0 , so the intermediate value theorem grants at zero $\hat{x}<0$.
(c) Integrating by parts we have $\int x e^{-a x} d x=D-e^{-a x}(a x+1) / a^{2}$ for any $a \neq 0$; and, $\int p e^{-p x} d x=C-e^{-p x}$. Inserting, we get

$$
\begin{aligned}
\int g(x) d x & =\frac{K-e^{-p x}-\frac{2}{p^{2}} e^{-p x}(p x+1)-\frac{1}{4 p} e^{-2 p x}(2 p x+1)}{\text { or, if you like }}=
\end{aligned}
$$

For the improper integral $\int_{p}^{\infty} g(x) d x$, which by definition equals $\lim _{R \rightarrow+\infty} \int_{p}^{R} g(x) d x$, the lower limit of integration is no issue; the question is whether

$$
-\lim _{x \rightarrow \infty}\left\{e^{-p x}+\frac{2}{p^{2}} e^{-p x}(p x+1)+\frac{1}{4 p} e^{-2 p x}(2 p x+1)\right\}
$$

converges. It does converge, as each term is polynomial growth times exponential decay.

Problem 3 Let r be a positive constant. Consider the problem

$$
\text { minimize } e^{2 y+(1-2 r) x-r}-\ln (x+y+r / 2) \quad \text { subject to } \quad x+2 y=r
$$

Write out the associated Lagrange conditions, and show that they are equivalent to

$$
2 r(x+2 r) e^{-2 r x}+1=0
$$

(Hint: Eliminate the multiplier and then y.)

On the solution: The Lagrange conditions are

$$
\begin{gather*}
(1-2 r) e^{2 y+(1-2 r) x-r}-\frac{1}{x+y+r / 2}=\lambda \tag{1}\\
2 e^{2 y+(1-2 r) x-r}-\frac{1}{x+y+r / 2}=2 \lambda \tag{2}\\
x+2 y=r \tag{3}
\end{gather*}
$$

Subtracting twice of (1) from (2), we get

$$
0=(2-2+4 r) e^{2 y+(1-2 r) x-r}-(1-2) \frac{1}{x+y+r / 2}
$$

and by inserting $y=(r-x) / 2$ the right-hand side becomes

$$
=4 r e^{r-x+x-2 r x-r}+\frac{1}{x+r / 2-x / 2+r / 2}=\frac{1}{r+x / 2}\left[\left(4 r^{2}+2 r x\right) e^{-2 r x}+1\right]
$$

Problem 4

(a) (i) Show that

$$
\int[2 t(\ln t-1)-\ln t] e^{-2 t} \mathrm{~d} t=t(1-\ln t) e^{-2 t}+C
$$

(ii) Show that $t \cdot(1-\ln t)$ is a particular solution of the differential equation

$$
\begin{equation*}
\dot{x}(t)=2 x(t)+2 t(\ln t-1)-\ln t, \quad t>0 \tag{*}
\end{equation*}
$$

(b) Find the general solution of the differential equation (*). (Hint: Use part (a).)
(c) One particular solution of $(*)$ passes through the point where $(t, x)=(1,3)$. Find the equation for the tangent line at that point.

On the solution:

(a) These follow by (i) differentiating the right-hand side, and (ii) calculating the lefthand and right-hand sides and verifying.
(b) By formula or by integrating factor,

$$
\frac{d}{d t}\left(x e^{-2 t}\right)=(\dot{x}-2 x) e^{-2 t}=[2 t(\ln t-1)-\ln t] e^{-2 t}
$$

and using (a)(i), $x e^{-2 t}=t(1-\ln t) e^{-2 t}+C$ so that

$$
\underline{\underline{x(t)=t(1-\ln t)+C e^{2 t}}}
$$

(c) For this part, we do not need the general solution. The line has equation $x-x_{0}=$ $\dot{x}\left(t_{0}\right)\left(t-t_{0}\right)$, and $\dot{x}(1)=2 \cdot 3+2 \cdot 1(\ln 1-1)-\ln 1=4$ from the differential equation. Therefore, the answer is $x=3+4(t-1)=\underline{\underline{4 t-1}}$.

Problem 5 An exam problem in ECON5155 in December 2012, led to an equation system of the form

$$
\begin{aligned}
\left(e^{t u}+e^{-t u}\right) v-u+s & =0 \\
\left(e^{t u}-e^{-t u}\right) t v & =1
\end{aligned}
$$

which defines u and v as continuously differentiable functions of s and t around the point P where $s=-2(e+3) /(e-1), t=1 / 4, u=2$ and $v=4 \sqrt{e} /(e-1)$. (You are not supposed to show this.)
(a) Differentiate the equation system (i.e. calculate differentials).
(b) Use the differentiated system to find the value of $\partial u / \partial s$ at P.
(You are required to use the differentiated system, even though there might be other methods.)

On the solution:

(a) Differentiation yields e.g. the form

$$
\begin{array}{r}
d s+u v\left(e^{t u}-e^{-t u}\right) d t+\left[t v\left(e^{t u}-e^{-t u}\right)-1\right] d u+\left(e^{t u}+e^{-t u}\right) d v=0 \\
{\left[t u\left(e^{t u}+e^{-t u}\right)+e^{t u}-e^{-t u}\right] v d t+t^{2} v\left(e^{t u}+e^{-t u}\right) d u+t\left(e^{t u}-e^{-t u}\right) d v=0}
\end{array}
$$

(b) At P, we can insert the coordinates; note in particular that $e^{t u} \pm e^{-t u}=e^{-1 / 2}(e \pm 1)$. Furthermore, since we are only interesting in partial changes wrt. s we can put $d t=0$, in which case we obtain

$$
\begin{array}{r}
1+\overbrace{\left[\frac{e^{1 / 2}}{e-1} e^{-1 / 2}(e-1)-1\right]}^{=0} \frac{\partial u}{\partial s}+e^{-1 / 2}(e+1) \frac{\partial v}{\partial s}=0 \\
\frac{1}{4} \cdot \frac{e^{1 / 2}}{e-1} \cdot e^{-1 / 2}(e+1) \frac{\partial u}{\partial s}+\frac{1}{4} \cdot \frac{e-1}{e^{1 / 2}} \frac{\partial v}{\partial s}=0
\end{array}
$$

so that

$$
\frac{\partial u}{\partial s}=\frac{(e-1)^{2}}{(e+1) e^{1 / 2}} \cdot\left(-\frac{\partial v}{\partial s}\right)=\frac{(e-1)^{2}}{(e+1) e^{1 / 2}} \cdot \frac{e^{1 / 2}}{e+1}=\underline{\underline{\left(\frac{e-1}{e+1}\right)^{2}}}
$$

