ECON3120/4120 Mathematics 2

December 8th 2014, 1430-1730.
There are 2 pages of problems to be solved.
All printed and written material may be used, as well as pocket calculators.
Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier letter-enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.

Problem 1 Consider for each real number t the matrix \mathbf{A}_{t} and the equation system (in the unknown $(x, y, z))$ given as follows:

$$
\mathbf{A}_{t}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
t \\
t \\
t
\end{array}\right) \quad \text { where } \quad \mathbf{A}_{t}=\left(\begin{array}{ccc}
7 & 4 & 0 \\
3 t & -8 & t-7 \\
-6 & 3 t & 2 t+3
\end{array}\right)
$$

(a) Find $r \neq 0$ and $s \neq 0$ such that the determinant of \mathbf{A}_{t} equals $t \cdot(r t+s)$.
(b) Except for two values t_{0} and t_{1} for t, the equation system has one and only one solution. Find t_{0} and t_{1}.
(c) There are infinitely many solutions for precisely one of the t_{0}, t_{1}.

Solve the system for that t. (Do not do anything about the other t-value.)
Hint: From the previous parts it should be easy to spot which t.

Problem 2

(a) Use integration by substitution to show that $\int \frac{1}{x \ln |x|} d x=\ln |\ln | x| |+C$.
(Integration by substitution is mandatory. There is no score for differentiating the right-hand side.)
(b) Find the general solution of the differential equation

$$
\begin{equation*}
\dot{x}=(x \ln x)(1+\ln t), \quad t \geq 1, x \geq 1 \tag{D}
\end{equation*}
$$

(c) Find the particular solution which passes through the point $(t, x)=(1,1)$.

Problem 3 Let $f(x, y)=e^{1-x^{3}-y^{4}}-1$.
(a) i) Find real numbers p and q such that the function $\quad M(x, y)=f(x, y)-p x-q y$ has a stationary point at $(x, y)=(1,0)$.
ii) Classify $(x, y)=(1,0)$ as a stationary point for M. (You can do this without having found p and q.)

Consider from now on the problem

$$
\begin{gather*}
V=\max f(x, y) \quad \text { subject to }(x, y) \in S \\
\text { where } S \text { is given by the constraints } \quad\left\{\begin{array}{l}
y \geq 0 \\
2 y \leq x-1 \\
x \leq 2014
\end{array}\right. \tag{P}
\end{gather*}
$$

(b) Explain why the problem has a solution, and state the Kuhn-Tucker conditions associated with the problem.
(c) Let (x, y) satisfy the Kuhn-Tucker conditions and the constraints stated in (P).

Show that we must have $2 y=x-1$. (Hint: Suppose for contradiction that $2 y \neq x-1$.)
The point $(x, y)=(1,0)$ solves the problem (P) (you shall not show this). If we replace the constraint $<y \geq 0 »$ by $<y \geq-0.02 »$, the optimal value increases by ΔV.
(d) Approximate ΔV from the Kuhn-Tucker conditions for (P).
(You are asked for the approximation, not for the exact value.)

Problem 4 Define a function $H=H\left(x_{1}, \ldots, x_{n}\right)$ by

$$
H\left(x_{1}, \ldots, x_{n}\right)=\left[x_{1}^{2014}+\ldots+x_{n}^{2014}\right]^{1 / 2014}
$$

Without calculating derivatives or elasticities, find (for $H \neq 0$)

$$
\mathrm{El}_{1} H\left(x_{1}, \ldots, x_{n}\right)+\ldots+\mathrm{El}_{n} H\left(x_{1}, \ldots, x_{n}\right)
$$

where $\mathrm{El}_{i} H$ denotes the partial elasticity $\frac{x_{i}}{H} \cdot \frac{\partial H}{\partial x_{i}}$.
(Hint: Calculate $H\left(t x_{1}, \ldots, t x_{n}\right)$; what is known about such functions?)

