
University of Oslo / Department of Economics / NCF

ECON3120/4120 Mathematics 2 – on the 2014–12–08 exam

• This note is not suited as a complete solution or as a template for an exam paper.
It was written as guidance for the grading process – however, with additional notes
and remarks for using the document in teaching later.

– This version reflects what was expected in this particular semester, and which
may not be applicable to future semesters. In particular, what tests one is requi-
red to perform before answering «no conclusion» may not apply for later.

• For readability, the problems are restated, their respective solutions on the same
page.

• Weighting: assigned at the grading committee’s discretion. (In case of appeals: the
new grading committee assigns weighting at their discretion.) The problem set was
written with the intention that a uniform weighting over letter-enumerated items
should be a feasible choice, and this – along with it being merely an intention to

facilitate which does not tie the committe’s hands – has been communicated.

Problem 4 fits the rest of this page:

Problem 4 Define a function H = H(x1, . . . , xn) by

H(x1, . . . , xn) =
[

x2014

1
+ . . .+ x2014

n

]1/2014

Without calculating derivatives or elasticities, find (for H 6= 0)

El1H(x1, . . . , xn) + . . .+ ElnH(x1, . . . , xn)

where EliH denotes the partial elasticity
xi

H
·
∂H

∂xi

.

(Hint: Calculate H(tx1, . . . , txn); what is known about such functions?)

On the solution: H(tx) = tH(x) so the function is homogeneous, and from Eu-
ler’s homogeneous function theorem the answer is the degree of homogeneity, namely 1.

Note: It was intentional to test whether the students recognize a homogeneous function
from the defining property, omitting the «homogeneous» word and forbidding deriva-
tives/elasticities calculated out. The elasticities formulation of Euler’s theorem was
lectured.
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Problem 1 Consider for each real number t the matrix At and the equation system (in
the unknown (x, y, z)) given as follows:

At





x
y
z



 =





t
t
t



 where At =





7 4 0
3t −8 t− 7
−6 3t 2t+ 3





(a) Find r 6= 0 and s 6= 0 such that the determinant of At equals t · (rt+ s).

(b) Except for two values t0 and t1 for t, the equation system has one and only one
solution. Find t0 and t1.

(c) There are infinitely many solutions for precisely one of the t0, t1.
Solve the system for that t. (Do not do anything about the other t-value.)
Hint: From the previous parts it should be easy to spot which t.

On the solution:

(a) Cofactor expansion along the first row yields

|At| = 7

∣

∣

∣

∣

−8 t− 7
3t 2t− 3

∣

∣

∣

∣

− 4

∣

∣

∣

∣

3t t− 7
−6 2t− 3

∣

∣

∣

∣

= −56(2t− 3)− 21t(t− 7)− 12t(2t− 3)− 24(t− 7)

= t2 · (−21− 24) + t · (−108 + 147− 24)

so that r = −45 and s = −25.

(b) Unique solution if and only if |At| 6= 0; from the information given in part (a),
t0 = 0 and t1 = −s/r. The only thing where the calculations from (a) are needed,

is to insert s and r to obtain t1 = −5/9.

(c) From the information given in part (a), there are infinitely many solutions when
t = 0 (since then |At| = 0 and the system is homogeneous). We have

A0 =





7 4 0
0 −8 −7
−6 0 3



 ∼





0 4 7/2
0 −8 −7
−1 0 1/2





by scaling the third row by 1/6 and adding 7 of it to the first. The two first rows
are now proportional. Now let x = c, so that z = 2c and y = −7c/4, (c being free).

(Other solution formulations are of course possible.)
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Problem 2

(a) Use integration by substitution to show that

∫

1

x ln |x|
dx = ln

∣

∣ ln |x|
∣

∣+ C.

(Integration by substitution is mandatory. There is no score for differentiating the
right-hand side.)

(b) Find the general solution of the differential equation

ẋ = (x ln x)(1 + ln t), t ≥ 1, x ≥ 1 (D)

(c) Find the particular solution which passes through the point (t, x) = (1, 1).

On the solution:

(a) Both u = ln |x| and v = ln
∣

∣ ln |x|
∣

∣ work, the former is likely more intuitive; du =
dx/x, transforming the integral to

∫

du

u
= ln |u|+ C = ln

∣

∣ ln |x|
∣

∣+ C

(b, c) Since x ≥ 1, we have only one constant solution, namely x ≡ 1 (this answers (c)).

For x > 1, we separate and integrate

∫

dx

x ln x
=

∫

(1 + ln t) dt = K + t ln t

where for the RHS integral we have used the information given in part (a) (since
x > 1, no absolute value signs), and the dt-integral is solved by parts

∫

1 · ln t dt =
t ln t −

∫

t
t
dt = t ln t − t +K. So with Q being an arbitrary nonnegative constant

(Q = 0 for the constant solution, otherwise Q = eK), the answer to part (b) is

x(t) = eQtt , (Q ≥ 0)
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Problem 3 Let f(x, y) = e1−x3
−y4 − 1.

(a) i) Find real numbers p and q such that the function M(x, y) = f(x, y)−px−qy
has a stationary point at (x, y) = (1, 0).

ii) Classify (x, y) = (1, 0) as a stationary point for M .
(You can do this without having found p and q.)

On the solution of part (a): For grading, one has to clarify the level of ambition
as has been announced for this semester: Local second-order conditions need only be
checked at the point, and will be inconclusive if the Hessian determinant vanishes
there – then «inconclusive» is a perfectly valid answer. They may of course employ
the punctured neighbourhood version, but it is not required in this semester. (This
cannot be taken to be valid in semesters to follow.)

Thus from the partial first derivatives

M ′

x(x, y) = −3x2e1−x3
−y4 − p and M ′

y(x, y) = −4y3e1−x3
−y4 − q,

we have p = −3 and q = 0 for (1, 0) to be stationary, and from the second derivatives

M ′′

xx(x, y) = f ′′

xx(x, y) =
[

(−3x2)2 − 6x
]

e1−x3
−y4 so that M ′′

xx(1, 0) = 3

M ′′

yy(x, y) = f ′′

yy(x, y) =
[

(−4y3)2 − 12y2
]

e1−x3
−y4 so that M ′′

yy(1, 0) = 0

M ′′

xy(x, y) = f ′′

xy(x, y) = −12x2y3e1−x3
−y4 so that M ′′

xy(1, 0) = 0 = M ′′

yx(1, 0)

the second-derivative test is inconclusive.
It is of course perfectly OK to make e.g. the following argument why we have a saddle

point: Because M ′′

xx(1, 0) = 3, then for fixed y = 0 we have a local min for M(x, 0);
because M ′′

yy is 4y2[4y4 − 3]e1−x3
−y4 which is negative for y 6= 0, then for fixed x = 1

we have a local max for M(1, y). Thus (1, 0) is neither local min nor local max, i.e. it
is a saddle point.
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[problem 3 cont’d:] Consider from now on the problem

V =max f(x, y) subject to (x, y) ∈ S,

where S is given by the constraints











y ≥ 0

2y ≤ x− 1

x ≤ 2014

(P)

(b) Explain why the problem has a solution, and state the Kuhn–Tucker conditions
associated with the problem.

(c) Let (x, y) satisfy the Kuhn–Tucker conditions and the constraints stated in (P).
Show that we must have 2y = x−1. (Hint: Suppose for contradiction that 2y 6= x−1.)

The point (x, y) = (1, 0) solves the problem (P) (you shall not show this). If we replace
the constraint « y ≥ 0 » by « y ≥ −0.02 », the optimal value increases by ∆V .

(d) Approximate ∆V from the Kuhn–Tucker conditions for (P).
(You are asked for the approximation, not for the exact value.)

On the solution, part (b) ff.:

(b) Existence by the extreme value theorem, as f is continuous and S is closed and
bounded (and nonempty).
Putting L(x, y) = f(x, y)− λ(2y − x+ 1) + αy − β(x− 2014), the conditions are:

0 = −3x2e1−x3
−y4 + λ− β

0 = −4y3e1−x3
−y4 − 2λ+ α

λ ≥ 0 (= 0 if 2y − x < −1)

α ≥ 0 (= 0 if y > 0)

β ≥ 0 (= 0 if x < 2014)

Note: Conventions vary over what condition set bears the «Kuhn–Tucker» name;

• It is OK to include or to omit the admissibility conditions.

• Variants that are logically equivalent – e.g. with «α ≥ 0 = αy» are also just
fine. (The above does not write «−α(−y)» either.)

(c) Suppose for contradiction that the Kuhn–Tucker conditions hold with 2y < x− 1.
Then λ = 0 and since x 6= 0 on S, we have the contradiction β < 0.

(d) The increase is 0.02 times the appropriate multiplier, which in the above notation
is α. Since β = 0 we have λ = 3 and since y = 0 we have α = 2λ = 6. So the
answer is 0.12.
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