ECON3120/4120 Mathematics 2

May 29th 2015, 0900-1200.
There are 2 pages of problems to be solved.
All printed and written material may be used, as well as pocket calculators.
Grades given run from A (best) to E for passes, and F for fail.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier part or item (e.g. "(a)" or "i)") to solve a later one (e.g. "(c)" or "ii)"), regardless of whether you managed to answer the former. A later part or item does not necessarily utilize answers from or information given in a previous one.

Problem 1 Define for each real number w the matrix \mathbf{A}_{w} and the vector \mathbf{b} by

$$
\mathbf{A}_{w}=\left(\begin{array}{ccc}
1000+w & 1001 & 1002 \\
1000 & 1000+w & 1000 \\
1000 & 999 & 998+w
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

(a) i) Calculate $\mathbf{A}_{2} \mathbf{b}$.
ii) Why does it follow from i) that the determinant $\left|\mathbf{A}_{2}\right|$ equals 0 ?
(b) Observe that the sum of the three rows is $(3000+w)$ times the vector $(1,1,1)$. Use this to show that i) $\left|\mathbf{A}_{-3000}\right|=0$, and ii) $\left|\mathbf{A}_{0}\right|=0$.
(c) For each of the following equation systems, decide the number of solutions (zero, one
or more than one):
i) $\mathbf{A}_{0} \mathbf{x}=\mathbf{0}$;
ii) $\mathbf{A}_{1} \mathbf{x}=\mathbf{1}$;
iii) $\mathbf{A}_{2} \mathbf{x}=\mathrm{b}$.
(Hint: It may help to add two of the equations to the third.)

Problem 2 The following equation system defines continuously differentiable functions $u=u(p, q), v=v(p, q)$ around the point where $p=q=1, u=v=0$:

$$
\begin{align*}
e^{u}+\ln (1+p q v)+u v-q & =0 \tag{E}\\
e^{u}-e^{u v}-p & =-1
\end{align*}
$$

(a) Differentiate the system (i.e. calculate differentials).
(b) Find a general expression for $v_{p}^{\prime}(p, q)$.

Problem 3

(a) Find the limits (or show non-existence), for arbitrary constants $p>q \geq 0$. (Hint for $p \in(0,1):$ Write $\frac{1}{t}=\frac{t-1}{t} \cdot \frac{1}{t-1}$.)
i) $\lim _{t \rightarrow 1} \frac{(\ln t)^{q+1}}{t-1}$,
ii) $\lim _{t \rightarrow+\infty} \frac{\ln t}{(t-1)^{p}}$,
iii) $\lim _{t \rightarrow+\infty} \frac{\left(\ln t^{p}\right)^{q+1}}{(t-1)^{p}}$

For each $x_{1}>0$, let $x(t)$ be that particular solution of the differential equation

$$
\begin{equation*}
\dot{x}=\frac{x^{3}-8}{x^{2}} \cdot t^{8} \ln t \tag{D}
\end{equation*}
$$

which is such that $x(1)=x_{1}$. (The equation is valid only for $t>0, x>0$.)
(b) Explain why $\ddot{x}(1)=\left(x_{1}-\frac{8}{x_{1}^{2}}\right) \cdot \lim _{t \rightarrow 1} \frac{\ln t}{t-1}$, and use this and part (a) to find the quadratic approximation of x around $t=1$.
For full score, you are required to show it using only these pieces of information. If you use other means, e.g. part (c) below, you can still get up to a "C" worth of score.
(c) Solve (D) for each value of $x_{1}>0$.

Problem 4 Let $p \neq q$ be positive integers with q odd (i.e. $1,3,5, \ldots$). Let $g(x, y, z)=$ $x^{q+1}+y^{q+1}+z^{q+1}-1$, and consider the max/min problems

$$
\begin{equation*}
\max / \min \frac{x^{p+1}+y^{p+1}+z^{p+1}}{p+1} \quad \text { subject to } g(x, y, z)=0 \quad \text { and } \quad x+y-z=1 \tag{P}
\end{equation*}
$$

(a) i) At least one of the max/min problems will have a solution. Which one(s)? (Hint: It is crucial that q is odd so that i.e. $g(-x, y, z)=g(x, y, z)$.)
ii) State the associated Lagrange conditions.

In the rest of this problem, we shall consider possible solutions of the form $(x, y, z)=$ $(x, x, 2 x-1)$. Set $y=x$, and $z=x+y-1=2 x-1$, so that the first constraint reads $h(x)=0$, where $h(x)=g(x, x, 2 x-1)=2 x^{q+1}+(2 x-1)^{q+1}-1$. (You shall not show this.)
(b) i) Show that the function $h(x)$ has a zero $x^{*}>1 / 2$.
ii) Show that the point $(x, y, z)=\left(x^{*}, x^{*}, 2 x^{*}-1\right)$ satisfies the Lagrange conditions, where $x^{*}>1 / 2$ is the zero from item i).

- If unable to do so, score up to a "C" on this item ii) may be awarded if you instead show that the Lagrange conditions are satisfied at $(0,0,-1)$.

