
University of Oslo / Department of Economics / NCF

ECON3120/4120 Mathematics 2 – on the 2015–05–29 exam

• This note is not suited as a complete solution or as a template for an exam paper,
it is too sketchy. It was written as guidance for the grading process – however, with
additional notes and remarks for using the document in teaching later.

• For readability, the problems are restated, followed by their respective solutions.

• Weighting: assigned at the grading committee’s discretion. (In case of appeals: the
new grading committee assigns weighting at their discretion.) The problem set was
written with the intention that a uniform weighting over letter-enumerated items
should be a feasible choice, and this – along with it being merely an intention to
facilitate which does not tie the committe’s hands – has been communicated.

Questions that took more exam time than usual The grading committee needs to be
aware that there were a lot of questions to this exam problem set. I think there was indeed
more (legitimate!) need for clarification than usual, and the time it took to walk around
and respond to questions may impair the efficiency also to the majority that did not have
any questions.
The time spent amounted to approximately 40 minutes, from 1005 to 1045 (and I was sub-
sequently called back at 11 for a question from a single candidate). Two plenary announce-
ments were made, and the conditions in Idrettsbygningen meant several candidates needed
to have the questions repeated individually. Arguably, this left the candidates with less
than three effective hours on this problem set.
The following summarizes the issues (not counting those which only one candidate had
questions on). Some of these are issues that the candidates would under normal circums-
tances have been expected to figure out by themselves, but which were clarified in the
interest of time, and also because they concerned intended hints, that likely did not serve
their purpose to everyone.

• 1 (b). The sum of the rows means the sum of row vector number one, row vector
number two, and row vector number 3. (And the (usual) questions of whether the
notation “A−3000” really means to put w = −3000. Affirmed to those who asked.)

• 1 (c), plenary announcement due to several questions on the matter:
The hint could have been taken to mean to add up the three vector equations i),
ii) and iii). It was clarified that the hint concerns each of them. Most likely the
problem set would have done better without this hint, which was intended to facilitate
recycling of the calculations from part (b).

• 2, plenary announcement:
What general expression means, and that p = q = 1, u = v = 0 merely identifies the
function. They should know, but the combination of pitfalls and zeitnot ...
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• 3 (a), plenary announcement:
The “p” and “q” letters used in problems 2, 3(a), 4 shall not be taken to mean the
problems are related – in particular, the ranges could be different, and in particular
they should in part 3 (a) take care to cover the possible case q = 0.
The latter is something they would normally be expected to catch, but there is a risk
that someone would just assume q being natural (cf. problem 4) – even if the hint is
stated to be useful for a non-integer range for p.

• 4, plenary announcement:
There is one max.-problem and one min.-problem, and both constraints apply to
both. It is not to be taken as one (or two?) problem(s) for each constraint. Notice the
(unintended) slight difference in wording between Norwegian and English version.

The committee should apply their best judgment on the impact of the issues.

Problem 1 Define for each real number w the matrix Aw and the vector b by

Aw =

1000 + w 1001 1002
1000 1000 + w 1000
1000 999 998 + w

 , b =

 1
0
−1


(a) i) Calculate A2b.

ii) Why does it follow from i) that the determinant |A2| equals 0?

(b) Observe that the sum of the three rows is (3000 + w) times the vector (1, 1, 1). Use
this to show that i) |A−3000| = 0, and ii) |A0| = 0.

(c) For each of the following equation systems, decide the number of solutions (zero, one
or more than one): i) A0x = 0; ii) A1x = 1; iii) A2x = b.
(Hint: It may help to add two of the equations to the third.)

On the solution of problem 1 This problem tests calculations of determinants – this
specifically through row operations; furthermore, the connection between nonzero deter-
minant and uniqueness of solution; and – in (c) item iii) – Gaussian elimination.

(a) i) w = 2 yields A2b = (1002− 1002, 1000− 1000, 1000− 1000)′ = 0.

ii) That means |A2| = 0; had it been nonzero, then A2x could only be 0 for x = 0
(we would have had b = A−12 0).
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(b) Adding row #1 and row #2 to row #3 does not change the determinant, so that

|Aw| =

∣∣∣∣∣∣
1000 + w 1001 1002
1000 1000 + w 1000

3000 + w 3000 + w 3000 + w

∣∣∣∣∣∣ = (3000 + w)

∣∣∣∣∣∣
1000 + w 1001 1002
1000 1000 + w 1000
1 1 1

∣∣∣∣∣∣
where we have used that a scaling of a single row (the common 3000+w in the third
row) will factor out. This is zero for w = −3000. For w = 0, we have two proportional
rows and thus zero determinant.

(c) From (b) we it is given that |Aw| vanishes when w ∈ {−3000, 0}. The calculations
from (a) imply |A2| = 0.

i) Homogeneous system, singular coefficient matrix: infinitely many solutions.

ii) There are basically three ways to show that the coefficient matrix is invertible,
thus there is a unique solution.

• One is to calculate the determinant completely. Subtracting 1000+w resp.
1000 of the third row from the others, yields

|Aw| = (3000 + w)

∣∣∣∣∣∣
1000 + w 1001 1002
1000 1000 + w 1000
1 1 1

∣∣∣∣∣∣
= (3000 + w)

∣∣∣∣∣∣
0 1− w 2− w
0 w 0
1 1 1

∣∣∣∣∣∣ = (3000 + w)w(w − 2)

so that |A1| 6= 0 and there is unique solution.

• Alternatively – shorter, but a bit “fancy” – is to notice that the determinant
involves one cubic term and none of higher order, so there cannot be more
than three zeroes – and we have found three, and 1 is not among them.
Thus, again, |A1| 6= 0 and unique solution.

• Or one could start eliminating, to sooner or later arrive at either the solution
itself, or at an invertible coefficient matrix.

iii) Put w = 2 and solve. The hint gives nice numbers: summing the equations –
say, adding the first and second to the third – yields 3002(x + y + z) = 0, and
dividing by 3002 the third equation reads x + y + z = 0. Subtracting 1000 of
this from #2 yields 2x2 = 0, subtracting 1002 of it from #1 yields −x2 = 1, so
we have no solution.

Eliminating in a different order is of course perfectly fine.
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Problem 2 The following equation system defines continuously differentiable functions
u = u(p, q), v = v(p, q) around the point where p = q = 1, u = v = 0:

eu + ln(1 + pqv) + uv − q = 0

eu − euv − p = −1
(E)

(a) Differentiate the system (i.e. calculate differentials).

(b) Find a general expression for v′p(p, q).

On the solution of problem 2 This problem tries the familiarity with differentials, and
the ability to identify a linear equation system for dv (and solve it).

Term by term differentiation:

eu du+
qv dp+ pv dq + pq dv

1 + pqv
+ v du+ u dv − dq = 0

eu du− euv(v du+ u dv)− dp = 0

or, collecting terms:[
eu + v

]
du+

[
u+

pq

1 + pqv

]
dv = − qv

1 + pqv
dp+

[
1− pv

1 + pqv

]
dq[

eu − veuv
]
du− ueuv dv = dp

For v′p we want to solve for dv with dq = 0. For example we can use Cramér’s rule:

v′p(p, q) =

∣∣∣∣∣ eu + v −qv
1+pqv

eu − veuv 1

∣∣∣∣∣∣∣∣∣∣ eu + v u+ pq
1+pqv

eu − veuv −ueuv

∣∣∣∣∣
= − (1 + pqv)(eu + v) + qv(eu − veuv)

(1 + pqv)(eu + v)ueuv + ((1 + pqv)u+ pq)(eu − veuv)

(after having expanded the fraction by 1+pqv, which isn’t essential). Note the minus sign.
As mentioned, it was clarified that the numbers for p, q, u and v were only to identify the
function.
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Problem 3, part (a) first

(a) Find the limits (or show non-existence), for arbitrary constants p > q ≥ 0. (Hint for
p ∈ (0, 1): Write 1

t
= t−1

t
· 1
t−1 .)

i) lim
t→1

(ln t)q+1

t− 1
, ii) lim

t→+∞

ln t

(t− 1)p
, iii) lim

t→+∞

(ln tp)q+1

(t− 1)p

On the solution of problem 3 part (a) This part tests l’Hôpital (it was pointed out
that they needed to cover q = 0, which gives a different-looking answer in item i)) and
manipulating limits; the latter trick of taking the limit inside the power was given in a
lecture.

(a) i) A “0/0” expression, l’Hôpital’s rule yields limt→1(q + 1)(ln t)qt−1 = 0 for q > 0,
while for q = 0 we get limt→1 t

−1 = 1.

ii) An “∞/∞” expression, l’Hôpital’s rule yields

lim
t→∞

1

pt(t− 1)p−1
=

1

p
lim
t→∞

(t− 1

t
· (t− 1)−p

)
= 0

for all p > 0, where we have used (t− 1)/t→ 1.

iii) We have
(ln tp)q+1

(t− 1)p
=
[ p ln t

(t− 1)p/(q+1)

]q+1

, and (p ln t)/(t− 1)p/(q+1) tends to zero

by item ii) (because p/(q + 1) > 0 – that need not be pointed out).

5



Problem 3, cont’d For each x1 > 0, let x(t) be that particular solution of the differential
equation

ẋ =
x3 − 8

x2
· t8 ln t (D)

which is such that x(1) = x1. (The equation is valid only for t > 0, x > 0.)

(b) Explain why ẍ(1) = (x1 −
8

x21
) · lim

t→1

ln t

t− 1
, and use this and part (a) to find the

quadratic approximation of x around t = 1.
For full score, you are required to show it using only these pieces of information. If
you use other means, e.g. part (c) below, you can still get up to a “C” worth of score.

(c) Solve (D) for each value of x1 > 0.

On the solution of problem 3 (b) and (c) A bit akin to problem 127 (b) from the
compendium, although with a quadratic approximation:

(b) The last part first: we have x(t) ≈ x1 + ẋ(1) · (t − 1) + 1
2
ẍ(1) · (t − 1)2. Because

ẋ(1) = (x31−8x−21 ) ·18 ln 1 = 0, and the expression given for ẍ(1) yields (x1−8/x21) ·1
by (a) item i) (with q = 0), the second-order approximation is

x(t) ≈ x1 + (
x1
2
− 4

x21
) · (t− 1)2

To arrive at the form for ẍ(1):

• The quick way: since ẋ(1) = 0, then (from the very definition of the derivative
at 1 of ẋ, although one has to accept a reference to l’Hôpital’s rule) we have
ẍ(1) = limt→1

ẋ(t)
t−1 . Insert for ẋ from (D). The “0/0”-expression ln t/(t− 1) → 1

converges, from (a) item i), and for the rest just insert 1 for t and x1 for x(1).

• The following is also perfectly fine: differentiate the expression for ẋ to get

ẍ(t) =
[x3 − 8

x2
· t8
]′
ln t+

[x3 − 8

x2
· t8
]1
t
.

At t = 1 the first term vanishes (because of the ln), leaving us with ẍ(1) =
x1 − 8x−21 . One then merely has to point out that ln t

t−1 → 1.

Remarks to part (b): The reason to restrict the available information, is to test
whether they understand a differential equation says about the derivative. The com-
mittee has some discretion on awarding partial score, as the “C” typically ranges 55
to 75 percent score, but the left end of that interval was not intended.
(If the candidates miss out the different form of the limit for q = 0, they could easily
get an erroneous zero for the second derivative. If it is clear that they have the correct
formula for the quadratic approximation – a “ 1

2
” in particular – that error does hardly

simplify away too much of the essence of the question.)
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(c) For readability, the differential equation is restated on this page:

ẋ =
x3 − 8

x2
· t8 ln t

We have a constant solution x ≡ 2 if x1 = 2. For x1 6= 2, separate into x2dx/(x3−8) =
t8 ln t dt and integrate. For the dx integral, substitute y = x3 − 8, dy = 3x2dx, while
integrate the dt integral by parts:

1

3

∫
dy

y
=

1

9
t9 ln t− 1

9

∫
t9
1

t
dt, so that

1

3
ln |y| = 1

9
t9 ln t− 1

81
t9 + C.

The left-hand side is 1
3
ln |x3 − 8|. To get rid of the C, insert t = 1 and x = x1 to get

C = 1
3
ln |x31 − 8|+ 1

81
. Insert, multiply by 3 and apply the exponential function:

|x(t)3 − 8| = |x31 − 8| · e
1
3
ln t·t9−(t9−1)/27

Now x(t)−2 will have the same sign as x1−2 – start above (resp. below) the constant
solution ⇒ stay above (resp. below) it – so the absolute value signs can be dropped.
Solve for x:

x(t) = 3

√
8 + (x31 − 8)t(t9)/3 · e−(t9−1)/27

(the parentheses around t9 just for readability: it isn’t the 9 that is divided). By
inspection, this form also covers the constant solution.

Remarks to part (c): Part (c) will most likely see quite a few simple mistakes in
the calculations – those should not be penalized too harshly. One can also expect a
few candidates to forget the absolute value signs, which is also a very minor point –
it was not what was intended to test. The reason why the problem did not specify
x1 > 2, was in order to capture the constant solution; it has been stressed a bit in
class, as it highlights the significance of not dividing by zero. So the constant solution
is in my opinion way more significant than the absolute value.
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Problem 4 Let p 6= q be positive integers with q odd (i.e. 1, 3, 5, ... ). Let g(x, y, z) =
xq+1 + yq+1 + zq+1 − 1, and consider the max/min problems

max /min
xp+1 + yp+1 + zp+1

p+ 1
subject to g(x, y, z) = 0 and x+ y − z = 1 (P)

(a) i) At least one of the max/min problems will have a solution. Which one(s)?
(Hint: It is crucial that q is odd so that i.e. g(−x, y, z) = g(x, y, z).)

ii) State the associated Lagrange conditions.

In the rest of this problem, we shall consider possible solutions of the form (x, y, z) =
(x, x, 2x − 1). Set y = x, and z = x + y − 1 = 2x − 1, so that the first constraint reads
h(x) = 0, where h(x) = g(x, x, 2x−1) = 2xq+1+(2x−1)q+1−1. (You shall not show this.)

(b) i) Show that the function h(x) has a zero x∗ > 1/2.

ii) Show that the point (x, y, z) = (x∗, x∗, 2x∗−1) satisfies the Lagrange conditions,
where x∗ > 1/2 is the zero from item i).

• If unable to do so, score up to a “C” on this item ii) may be awarded if you
instead show that the Lagrange conditions are satisfied at (0, 0,−1).

On the solution of problem 4 Here it was clarified that there is one min.-problem and
one max.-problem – one can hope that nobody writes one max.-problem per constraint.
This problem intends to test (a)i) the extreme value theorem (though not in full detail;
this course sticks to functions that are continuous wherever defined, and though they are
told that one must beware natural restrictions on the domain of definition, e.g. for logs,
those concerns do not apply here; also, we do not stress non-emptiness of the admissible
set, although (0, 0,−1) is admissible); (a)ii) the Lagrange conditions; (b)i) the intermediate
value theorem (b)ii) the ability to verify that there are multipliers that do the job for a
given point. (Though, one cannot penalize those who deduce the point rather than taking
it for granted and verifying.) It was deliberate to assign a Lagrange problem, so that one
does not need to verify that there are nonnegative multipliers at the point(s).

(a) i) Both problems do have solution, by the extreme value theorem:
All functions are continuous (on the entire R3 space), and because q is odd,
neither |x| nor |y| nor |z| can exceed 1, so the set is bounded. It is also closed
(no argument required) and nonempty (hardly necessary to even point out).

ii) With L(x, y) =
xp+1 + yp+1 + zp+1

p+ 1
−λ ·(xq+1+yq+1+zq+1−1)−µ(x+y−z−1),

the Lagrange conditions can be written as e.g.

xp = (q + 1)λxq + µ

yp = (q + 1)λyq + µ

zp = (q + 1)λzq − µ

xq+1 + yq+1 + zq+1 = 1

x+ y − z = 1
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(b) i) The intermediate value theorem yields a zero because h(1/2) = 2 · 2−(q+1)− 1 =
2−q − 1 < 0 while h(x)→ +∞ as x→ +∞.

ii) It is given in the problem text that the constraints hold when x is a zero of h.
When x = y we have L′x = L′y, so the three stationarity conditions reduce to
two:

(x∗)p = (q + 1)λ(x∗)q + µ and (2x∗ − 1)p = (q + 1)λ(2x∗ − 1)q − µ

It suffices to point out that this is a 2×2 linear equation system with nonsingular
coefficient matrix, but if one tries to solve, adding the equations yield a λ-
coefficient of (q + 1)

[
(x∗)q + (2x∗ − 1)q

]
which is maybe so obviously positive

that it will not even be pointed out. (On the other hand it is not obvious unless
one has in mind that x∗ ≥ 1/2, but it is hard to argue ...) So there will be a λ,
and thus a µ, such that the Lagrange conditions are satisfied.

• The alternative point (0, 0,−1) is easier. The constraints easily hold (it
is hardly required to point out that the odd q yields (−1)q+1 − 1 = 0),
and inserting into the stationarity conditions we get two equations reading
µ = 0, while the third reads (−1)p = (q + 1)λ(−1)q. Thus the conditions
are satisfied for some λ and µ.
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