Elasticities as differentials; the elasticity of substitution

Elasticities as differentials.
Derivative: the instantaneous rate of change in units per units. Elasticity: the instantaneous rate of change in "percent per percent". That is, if you like: on logarithmic scale.
The elasticity $E I_{x} f(x)$ equals $\frac{x}{f(x)} f^{\prime}(x)$, but it also equals $\frac{d \ln f(x)}{d \ln x}$ as long as f and x both >0. More generally: $\frac{d \ln |f(x)|}{d \ln |x|}$ if $x \neq 0$. (Verify: calculate the differentials! $d \ln |f|=\frac{1}{f} d f$, and $\mathrm{d} \ln |x|=\frac{1}{\mathrm{x}} \mathrm{d} x$. Divide: $\frac{x}{\mathrm{f}} \cdot \frac{\mathrm{df}}{\mathrm{d} x}$ et voilà.) ... does "dividing differentials into derivatives" look like a cheat? Kind of, so just take our word that it works. Someone has done the job and proven it.

Application (that is: just motivation, not curriculum): A regression $y=\alpha+\sum_{i} \beta_{i} x_{i}+\epsilon$, estimates how much y will change when each x_{i} changes. \rightsquigarrow derivatives. OTOH, logging everything \rightsquigarrow elasticities.
To see that: put $v=\ln y, \xi_{i}=\ln x_{i}$. The regression $v=\alpha+\sum_{i} \beta_{i} \xi_{i}+\epsilon$ estimates how much $\ln y$ will change when $\ln x_{i}$ changes; that is, \approx "how many percent y changes when x_{i} changes with a percent".

Elasticities as differentials; the elasticity of substitution

The d In formulation gives most elasticity rules easily:

- $E I_{x}\left(A x^{r}\right)=\frac{d \ln A+r d \ln x}{\mathrm{~d} \ln x}=r$
- $E I_{x}\left(e^{b x}\right)=\frac{d(b x)}{d \ln x}=\frac{b d x}{x^{-1} d x}=b x$. (But El($\left.x^{x}\right) \neq x!$)
- If $h(x)=f(x) g(x)$, then $E I_{x} h=\frac{d \ln f+d \ln g}{d \ln x}=E I_{x} f+E I_{x} g$.
- If $h(x)=g(f(x))$, the chain rule works like for derivatives:
$E I_{x} h=\frac{d \ln g}{d \ln f} \cdot \frac{d \ln f}{d \ln x}=\left.E I_{y} g\right|_{y=f(x)} E I_{x} f$.
- On notation: e.g. " $E I_{x} g(f(x))$ " ... what does that mean?

Compare derivatives: $g^{\prime}(f(x))$ vs. $\frac{d}{d x} g(f(x))$. Two distinct symbols d and ∂ allows formulae like $\frac{d}{d K} F(K, L(K))=\frac{\partial F}{\partial K}+\frac{\partial F}{\partial L} \frac{d L}{d K}$.
But, does $E \mathrm{I}_{\mathrm{K}} \mathrm{F}(\mathrm{K}, \mathrm{L}(\mathrm{K}))$ mean "partial" or "total" elasticity?
(Typically: partial wrt. 1st variable, but ... economists sometimes think otherwise)

- $E I_{x}(f+g)=\frac{d \ln (f+g)}{d \ln x}=\frac{d f+d g}{f+g} \cdot \frac{1}{d \ln x}=\frac{f \cdot(d f / f)+g \cdot(d g / g)}{(f+g) \cdot d \ln x}$

$$
=\frac{f \cdot E I_{x} f+g \cdot E I_{x} g}{f+g}
$$

(value-weighted avg. of the elasticities.)
$E x .: \frac{d \ln \left(f(x)^{g(x)}\right)}{d \ln x}=\frac{d[g \ln f]}{d \ln x}=g \frac{d \ln f}{d \ln x}+\frac{d g}{d \ln x} \ln f=g\left[E I_{x} f+\ln f \cdot E I_{x} g\right]$

Elasticities as differentials; the elasticity of substitution

Back to $\frac{\partial L}{-\partial K}=\frac{\partial F}{\partial K} / \frac{\partial F}{\partial L}$ on the level curve $F(K, L)=C$.

- Ask instead: "if I want to reduce K by a percentage, how many percent will I have to increase L in order to keep F constant?"
- A: Relative increase in in L divided by relative reduction in K :

$$
\frac{\partial L}{L} /\left(-\frac{\partial K}{K}\right)=K \frac{\partial F}{\partial K} /\left(L \frac{\partial F}{\partial L}\right)=\frac{K}{F} \cdot \frac{\partial F}{\partial K} /\left(\frac{L}{F} \cdot \frac{\partial F}{\partial L}\right)=E I_{K} F / E I_{L} F
$$

- Ex.: Cobb-Douglas $K^{a} L^{b}$, yields a / b.
- Note for later: The factor use ratio L/K increases by ($1+\mathrm{a} / \mathrm{b}$) (unit: percent per percent reduction in K)

That was the elasticity of one function given by one equation.
What about of functions given by equation systems?
From, e.g., $\frac{\partial v}{\partial y}$, get $E I_{y} v=\frac{y}{v} \cdot \frac{\partial v}{\partial y}$. Or phrase the differentiated
system as $\mathbf{S}\binom{d u / u}{d v / v}=-\mathbf{Q}\left(\begin{array}{l}d x / x \\ d y / y \\ d z / z\end{array}\right)$ and solve for e.g. $\frac{d v}{v}$.

Elasticities as differentials; the elasticity of substitution

The elasticity of substitution: $F(K, L)$ defined for $K>0, L>0$, fixed level curve $F(K, L)=C$. (Level curve assumed strictly decreasing. Not unreasonable for isoquants ... but no Leontief)

- Composition of factors: A point on the level curve \longleftrightarrow a ratio L/K.
- Substitution: a percentwise change in L/K (cf. previous slide).
- Q: if we move along the level curve so much that the MRS changes by one percent; how much (in percent) does the ratio L/K change?
(Who would come up with that question? Blame economics! A one percent change in price (ratio) ...)
- This is the elasticity of substitution $\sigma_{\text {LK }}$ between K and L :

$$
\sigma_{\mathrm{LK}}=\frac{\mathrm{d} \ln (\mathrm{~L} / \mathrm{K})}{\mathrm{d} \ln [\mathrm{MRS}]}=\frac{\mathrm{d} \ln (\mathrm{~L} / \mathrm{K})}{\mathrm{d} \ln \left(\mathrm{~F}_{\mathrm{K}}^{\prime} / \mathrm{F}_{\mathrm{L}}^{\prime}\right)}
$$

- Formula in the book (under harder problems) and last slide.
- Examples next slide: will manipulate differentials.
- Note: $\sigma_{\text {KL }}=\sigma_{\text {LK }} . \quad$ (Why? ... thus language "between ... and")

Elasticities as differentials; the elasticity of substitution

The elasticity of substitution. Example: Cobb-Douglas.
When $F_{K}^{\prime}=a F / K$ and $F_{L}^{\prime}=b F / L$, the ratio $\frac{d \ln (L / K)}{d \ln \left(F_{K}^{\prime} / F_{\mathrm{L}}^{\prime}\right)}$ is 1 .
(Why? $d \ln (a L / b K)=d[\ln (a / b)+\ln (L / K)]=d \ln (L / K)$ since the differential of a constant is zero.)
So - with adaptation at MRS $=$ price ratio and still assuming output fixed at $C-a$ one percent change in price ratio $w / p \rightsquigarrow a$ one percent change in factor use ratio L / K.)

Example: The CES functions $F(K, L)=A\left(\alpha K^{-Q}+\beta L^{-Q}\right)^{-m / Q}$. Need partial derivatives. The differential of F is $\mathrm{dF}=$ $\frac{-m}{Q} \cdot \frac{F}{\alpha K^{-Q}+\beta L^{-Q}} d\left[\alpha K^{-Q}+\beta L^{-Q}\right]=\frac{m F}{\alpha K^{-Q}+\beta L^{-Q}} \cdot\left[\frac{\alpha d K}{K Q+1}+\frac{\beta d L}{L Q+1}\right]$
so $F_{K}^{\prime} / F_{L}^{\prime}=\frac{\alpha}{\beta} \cdot(L / K)^{Q+1}$. Apply log and differential:
$d \ln \left(\frac{\alpha}{\beta} \cdot(L / K)^{Q+1}\right)=0+(Q+1) d \ln (L / K)$.
Elasticity of substitution: $\frac{\mathrm{d} \ln (\mathrm{L} / \mathrm{K})}{(\mathrm{Q}+1) \mathrm{d} \ln (\mathrm{L} / \mathrm{K})}=\frac{1}{\mathrm{Q}+1}$.

Elasticities as differentials; the elasticity of substitution

Exercise: Let $g^{\prime}>0$ everywhere. Show that σ_{LK} is the same for $g(F(K, L))$ on the level curve $g(C)$ as for F on level curve C.

Limits exercise: Show that $\lim _{\mathrm{Q} \rightarrow 0}$ CES is a Cobb-Douglas.
Linear algebra exercise: As mentioned, there is a formula in the book (and you are free to use that!); $\sigma_{K L}$ happens to equal $\frac{F_{K}^{\prime} F_{L}^{\prime} \cdot\left(K F_{K}^{\prime}+L F_{L}^{\prime}\right)}{K L \cdot B}$, where $B=-\left[\left(F_{L}^{\prime}\right)^{2} F_{K K}^{\prime \prime}-2 F_{K}^{\prime} F_{L}^{\prime} F_{K L}^{\prime \prime}+\left(F_{K}^{\prime}\right)^{2} F_{L L}^{\prime \prime}\right]$

Find a t such that this B equals the determinant (all primes denote derivatives! No transposes here.)
 Post-lecture update: Calculate, see that $t=0$ fits.

This - inserted $\mathrm{t}=0$ - is called the bordered Hessian determinant of F. Note that the lower-right 2×2 block is the Hessian (i.e., has the second-order derivatives), and then there is a border of first-order derivatives and that top-left element.
Fact (4200/Math3): A C ${ }^{2}$ function of two variables is quasiconcave iff its bordered Hessian determinant is nonnegative everywhere.

Elasticities as differentials; the elasticity of substitution

Finally, that "expression for" re-clarified: [disclaimer: a commitment for 2018!]

- If you are asked to solve an equation system, we want the truth, the whole truth and nothing but the truth. (Likewise for, e.g., "find the points which satisfy the Kuhn-Tucker conditions".)
- If asked: "Find an expression for the inverse of \mathbf{A}_{t} ", then using the formula to get, say, $\frac{3}{\mathfrak{t}(1-\mathrm{t})}\left(\begin{array}{ccc}2 & -3 & 4 \mathrm{t} \\ \mathrm{t} & 9 & -3 \\ 0 & 0 & 2\end{array}\right)$, suffices.
- It is correct whenever the inverse exists - with or without any "as long as $t \notin\{0,1\}$ " (which won't hurt ...)
- Sometimes we allow for slightly less. Motivation: MRS for $F(K, L)=(K L)^{a}$, is $(L / K)^{1-a}$. That is also the MRS for $\mathrm{G}(\mathrm{K}, \mathrm{L})=1+(\mathrm{F}(\mathrm{K}, \mathrm{L})-1)^{3}$. Why? Formula: $\frac{3(\mathrm{~F}-1)^{2}}{3(\mathrm{~F}-1)^{2}} \cdot(\mathrm{~L} / \mathrm{K})^{1-a}$. Should "expression for" expect you to treat case $\mathrm{F}=1$ separately?
- For derivatives of implicitly given functions: no. Get an expression. (Zero denominator? Do not bother to check.)
- Elasticity of substitution: same. Just get an expression.
- Of course, you could be asked explicitly to compute a limit!

