
University of Oslo / Department of Economics

ECON3120/4120 Mathematics 2:
on the autumn 2019 postponed exam 2020-01-16

� Standard disclaimer: A note like this is not suited as a template for an exam paper. It was
written as guidance for the grading process � however, with additional notes and remarks
for using the document in teaching later.

� The document re�ects what was expected in that particular semester, and which may
not be applicable to future semesters. In particular, what tests one is required to
perform before answering �no conclusion� may not apply for later.

� Weighting: At the discretion of the committee (and in case of appeals: the new grading
committee). The committee might want to consider the next two bullet items.

The problem set was written with the intention that a uniform weighting over letter-
enumerated items should be a feasible choice, and this has been communicated.

� Special considerations for 2019: new exam format. See the guidelines for the ordinary exam.

� Addendum after grading: Graded much alike pre-2019 conversion default, to the extent
those thresholds had any neighbouring score (only 8 papers in total).

Problems (restated as given) and solutions and annotations (boxed) follow:

Problem 1 Take for granted that this system determines u = u(s) and v = v(s):

v · e3u + u2 + s = 0

3v · e3u + 2u = C (C a constant)

(a) Di�erentiate the system; i.e., calculate (total) di�erentials.

(b) Use the di�erentiated system to �nd an expression for u′(s). (You shall use the
di�erentiated system � there is no score for eliminating v from the original system.)

Problem 1 solved:

(a) Di�erentiating:
(
3ve3u + 2u

)
du+ e3u dv + ds = 0(

9ve3u + 2
)
du+ 3e3u dv = 0

(b) To eliminate dv, scale the �rst equation by 3 and subtract: 0 = 3(3ve3u+2u) du+

3ds− (9ve3u + 2)du which equals (6u− 2)du+ 3ds. Therefore, u′(s) =
3

2− 6u
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Problem 2 LetA =

t 3 1 0
1 −1 1 0
0 1 1 0
t 0 0 t

, M =

t
2 + 10 β 4 t2

t− 2 3 0 t
4 0 2 0
t2 t 0 γ

 and b =

t01
t


(a) � Calculate 3A−A′ (The prime symbol denotes transpose.)

� Not all of Ab, bM, b′b, bb′ are well-de�ned. Find one which is not.

(b) Fact: AA′ = M for some β and γ (which might depend on t). Find β and γ.
(You are not asked to check the other fourteen elements.)

(c) Calculate the determinant of A and of 1
2
AA′. (They depend on t.)

(d) Decide for what values of t the equation system Ax = b (where x is the vector of
unknowns) has no solution, one solution or more than one solution.

Problem 2 solved:

(a) � 3A−A′ =

3t 9 3 0
3 −3 3 0
0 3 3 0
3t 0 0 3t

−
t 1 0 t
3 −1 1 0
1 1 1 0
0 0 0 t

 =

 2t 8 3 −t
0 −2 2 0
−1 2 2 0
3t 0 0 2t


� bM would be 4× 1 by 4× 4 and is not well-de�ned. (The others are.)

(b) β = (t, 3, 1, 0) · (1, −1, 1, 0) = t− 3 + 1 = t− 2.

γ = (t, 0, 0, t) · (t, 0, 0, t) = 2t2.

(c) Cofactor expanding |A| along the fourth column, yields:

t

∣∣∣∣∣t 3 1
1 −1 1
0 1 1

∣∣∣∣∣ = t
(
t

∣∣∣∣−1 1
1 1

∣∣∣∣− 1

∣∣∣∣3 1
1 1

∣∣∣∣ ) = t
(
− 2t− 2) = −2t(t+ 1).

Then, |1
2
AA′| = (1

2
)4|A| |A| = 1

16
|A|2 = 1

4
t2 (t+ 1)2.
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(d) Unique solution for all t 6∈ {−1, 0} (by (b)). Remaining cases:

� Case t = 0: 4th equation says 0 = 0 and x4 does not enter and can be
chosen freely provided there is a solution. Considering the equation system in

three variables with coe�cient matrix

(
t 3 1
1 −1 1
0 1 1

)
, it has determinant equal

to −2(t + 1) = −2 6= 0, and so there is a unique solution for those three
variables, with x4 free. In�nitely many solutions.

� Case t = −1: Eliminating:
−1 3 1 0

∣∣ −1
1 −1 1 0

∣∣∣ 0

0 1 1 0
∣∣∣ 1

−1 0 0 −1
∣∣ −1

 ←−+

←−−−+

∼


−1 3 1 0

∣∣ −1
0 2 2 0

∣∣∣ −1
0 1 1 0

∣∣∣ 1

0 3 1 −1
∣∣ −2

 ←−−2+

and now the second equation says 0 = −3. No solution.

Problem 2 notes:

(a) The other matrix products are indeed well-de�ned, but the question was phrased
so that one need not argue for that.

(b) It is also OK to point out that AA′ must be symmetric, so β = m12 = m21 = t−2.

(c) The 1
2
was deliberately introduced to check whether they know scalings should be

raised to the nth power.
It is be acceptable for full score to calculate |1

2
M| from the matrix itself, although

it is not time-e�cient.

(d) For case t = 0, it is a serious error to merely notice that x4 is free without checking
that there is a solution for the other three.

Also, there are likely those who will go on Gaussian eliminating the whole thing
without using any information about determinants. That must also be accepted;
but division by zero is not.
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Problem 3

(a) Fix p > 0. Find constants α, β and γ such that

∫
zα(β + γ ln z) dz = zp ln z + C.

(b) Consider the di�erential equation ẋ+ x / t = 1 + 2 ln t (valid for > 0).

� Show that the particular solution passing through (t, x) = (1, 0), is t ln t.

� Find the general solution.
(Hint: If you do not want to look up a formula: what is 1

t
· d
dt
(t x(t))?)

Problem 3 solved:

(a) Di�erentiating the right-hand side wrt. z, we get pzp−1 ln z+zp ·1/z = zp−1 ·(p ln z+
1). Identifying coe�cients, α = p− 1, β = 1, γ = p.

(b) � t ln t is 1 for t = 0, so we only need to show that it satis�es the di�erential
equation. As (t ln t)′ = ln t + 1, the left-hand side becomes ln t + 1 + t ln t /t
which equals the right-hand side.

�
1
t
d
dt
(tx) = 1

t
(x+ tẋ) equals the left-hand side of the di�erential equation and

thus the right-hand side, so d
dt
(tx) = t+ 2t ln t. Integrating, tx = C +

∫
t(1 +

2 ln t)dt = C + t2 ln t using part (a) with p = 2. So the general solution is
x(t) = t ln t+ C/t.

Problem 3 notes: In (b) one can also �rst do the general solution and then show the
particular solution asked is C = 0. Alternatively, one can use that the linear di�erential
equation has general solution equal to t ln t+Cu(t) where Cu(t) is the general solution
of ẋ+ x/t = 0, which is solved for tx = constant.
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Problem 4 Let r > 0 be a constant. De�ne g(t) =
e−t

2

tr
· e

rt − e−rt

ert + e−rt
for t > 0.

(a) � Show that lim
t→0+

g(t) = lim
t→+∞

g(t) for all r ∈ (0, 1). (Calculate both!)

� Would the equality hold if r ≥ 1?

(b) Can we (with Mathematics 2 tools) use the extreme value theorem to prove the fact
that for r ∈ (0, 1), then g has some global maximum point t∗?

(c) Change the �2� exponent in g slightly to form the function h(t) =
e−t

2.019

tr
· e

rt − e−rt

ert + e−rt
.

Approximately how many percent does the maximum value change?
(Take for granted that a new maximum exists. Express your answer in terms of t∗.)

Problem 4 notes first: In (a), use of l'Hôpital's rule must be justi�ed. In particular,
the limit as t→ +∞ was intended to catch those who don't do that job. That a limit
can shift discontinuously from 0 via 1 to ∞ as an exponent crosses a certain value,
was covered in hand-in #4. In (b), a satisfactory answer is given below, although it is
actually possible to use the extreme value theorem in a proof, relegated to an endnote.

Problem 4 solved:

(a) When t → 0+, e−t
2

ert+e−rt
→ 1

2
6= 0, so g(t) → 1

2
limt→0+

ert−e−rt
tr

which is �0
0
�. By

l'Hôpital:

lim
t→0+

g(t) =
1

2
lim
t→0+

ert − e−rt

tr
=

1

2
lim
t→0+

rert + re−rt

rtr−1
= lim

t→0+
t1−r = 0.

When t→ +∞: Because e±rte−t
2
= e(±r−t)t and the exponent → −∞, the numer-

ator tends to zero while the denominator tends to in�nity. So this limit is 0 as
well.

For the second bullet item: The lim as t → +∞ does not depend on r > 0, but
the limit as t→ 0+ would be 1 for r = 1, and in�nite if r > 1. The answer is no.

(b) No [although see the endnote]; in order to apply the extreme value theorem, we
need a closed and bounded set. The domain of g is (0,∞) which isn't closed and
bounded (in fact, it is neither).

(c) We change an exponent, call it η, from 2. The derivative wrt. the exponent is

∂

∂η

[e−tη
tr
· e

rt − e−rt

ert + e−rt
]∣∣
t=t∗

=
ert∗ − e−rt∗
ert∗ + e−rt∗

· e
−tη∗

tr∗

∂

∂η

[
− tη

]∣∣
t=t∗

= −tη∗g(t∗) ln t∗

Increasing η by 0.019, the relative change is ≈ −0.019t2∗ ln t∗, or −1.9t2∗ ln t∗ percent.
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Problem 5
(a) (x1, y1) = (2, 4) is a stationary point for the function F (x, y) = −ye−x − (x2 − y)e−2.

Classify this point using the second-derivative test.

Consider now the problems

max −ye−x subject to x2 − y = 0 (L)

max −ye−x subject to x2 − y ≤ 0 and x4 + y2 ≤ 32 (K)

(b) � State the Lagrange conditions associated with problem (L); call the multiplier λ.

� State the Kuhn�Tucker conditions associated with problem (K).

(c) The information given in part (a) tells us that (x1, y1) = (2, 4) satis�es the Lagrange
conditions associated with problem (L), with multiplier λ = e−2.

� Does (x1, y1) satisfy the Kuhn�Tucker conditions associated with problem (K)?

� Consider problem (K). Is it possible for a point to satisfy the constraints and
the Kuhn�Tucker conditions with λ = 0? Again, λ is the multiplier on x2 − y.
(Hint: Remember that y ≥ x2 ≥ 0.)

Problem 5 solved:

(a) F ′y(x, y) = −e−x + e−2, so F ′′yy(x, y) = 0, F ′′xy(x, y) = e−x, and the Hessian determi-
nant becomes 0 · F ′′xx(x, y)− e−2x < 0 (no matter what F ′′xx is). Saddle point.

(b) Let L(x, y) = −ye−x−λ(x2−y)−µ(x2+y4−32); to get the Lagrangian for problem
(L), put µ = 0. We will need the partial  derivatives   L′x(x, y) = ye−x − 2λx − 4µx3
and L′y = −e−x + λ − 2µy.

� Lagrange conditions:

ye−x − 2λx = 0 −e−x + λ = 0 y = x2

� Kuhn�Tucker conditions:

ye−x − 2λx − 4µx3 = 0
−e−x + λ − 2µy      = 0

λ ≥ 0 with λ = 0 if y > x2

µ ≥ 0 with µ = 0 if x4 + y2 < 32.

(c) � Yes, because λ = e−2 > 0 (OK for an active constraint) and with µ = 0.

� With λ = 0, the �rst-order conditions read ye−x = 2µx and e−x = −4µy3, the
latter being impossible since y ≥ 0 and µ ≥ 0.
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2021 cor-
rections:
Original 
version had 
by mistake 
swapped the 
"4" and "2" 
exponents.

(b) fixes: 
Lagrangian 
(red); 
1st partial 
derivatives;  
first-order 
conditions 

(c): FOCs 
fixed, the 
conclusions 
stand. 



Problem 5 notes: In (b), alternative equivalent forms are just as good. They are free
to include admissibility in the Kuhn�Tucker conditions as well. In (c) �rst bullet item,
the course does per convention not include admissibility, so one can hardly expect that
it is checked (nor was that the purpose of the question).

Problem 4(b) note (for the more ambitious student)
It is possible to produce an extreme value theorem-based proof, because the limits of part (a) are a
common value ` (an essential assumption; otherwise, a strictly monotone function would be a coun-
terexample! But ` could be in�nite, so this argument applies to Problem 4 (b)).
The function g satis�es g(t) > 0 = `. For each ε > 0, there is an M ∈ (0, 1) such that 0 < g(t) < ε
when t < M or t > 1/M . Since g is continuous and the extreme value theorem grants an extremum
over the interval [M, 1/M ]. Now, let ε > 0 be so small that g(t) is somewhere ≥ ε (such an ε exists,
since g > 0). Then the t∗ which maximizes g over [M, 1/M ] is a global maximum; g(t∗) ≥ g(t) for all
t in the interval, and > ε > g(t) for all t not in the interval, thus ≥ g(t) for all t, the de�nition of a
global max.
The assumption that g(t) > ` = 0 simpli�es the writing, but is not essential; the curious mind can try
to complete the proof by just assuming g continuous and ` = lim

t→0+
g(t) = lim

t→+∞
g(t) (possibly in�nite).
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