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ECON3120/4120 Mathematics 2: the 2020-12-03 exam solved
This document solves the exam and gives guidelines for the grading process. Updated

post grading with information for the appeals committee.

• Standard disclaimer:
– This note is not suited as a complete solution or as a template for an exam paper.

It was written as guidance for the grading process – however, with additional
notes and remarks for using the document in teaching later.

– The document reflects what was expected in that particular semester, and which
may not be applicable to future semesters.

• Weighting: Suggestions were stated in the problem set, rather than suggesting a usual
(for this course) uniform over letters. The committee can deviate at their discretion.
The appeals committee can deviate at their discretion.

The document will restate each problem as given, each followed by a solution/annotations.
Generally, what is in sans serif font in what is otherwise a solution, is a comment / an
annotation; what says «Notes» in paragraph headings is of course notes as well.

Special considerations (I) for the 2020 exam: the format and the problem set

• The format is exceptional to this course: 5 hrs with more tools available.

• The committee must exercise considerable discretion. There is a risk that the format
and the set considered together, miss out on the usual level of difficulty, and this exam
cannot make a claim to suit specific grading thresholds1. Therefore it is suggested
that the committee attach more than usual weight to the official grade descriptions,
and also consider the empirical grade distribution.2

• This item updated post grading: The «pre-2019 defaults» turned out surpris-
ingly good with only minor adjustments: there were very few papers near 88 points,
so slacking the requirement for «A» a couple percentage points produced a clear
distinction between A and B; a good distinction between D and E was achieved by
raising the bar for D a point or two; and, there were very few near-passing fails.
The appeals committee must still consider to compare to a representative sample
of the exam papers submitted. One cannot expect/trust this note to guide the
quantification of grades for individual papers or a low number of such.

1which up to 2018 defaulted to 91/75/55/45/40 percent in this course; the most recent four-hour Math-
ematics 2 exam with a changed format did invoke Matematikkrådet’s slightly tougher scale.

2From the Department’s reports for five years 2015-2019, both course codes merged, the fail rate is 19 %
and the distribution over passes is: Starting at A: 7 % + 20 % + 37 % + 21 % + 14 % (ending at
E). That is cumulatively 7, 27, 64, 86, 100. Raw numbers per course code:
3120: 11+30+42+20+15 of 118 passed, and additionally 33 fails.
4120: 23+66+136+81+54 of 360 passed, and additionally 79 fails.
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Special considerations (II) for the 2020 exam: the submissions, and how to and
resolve submission-related technical issues

• The «one PDF for each of problems 1–5» was intended to reduce the number of
upload issues. It is not the intention to penalize candidates who submit a wrong
scan to the wrong number. The committee must however take note if there are
multiple uploads which differ. The administration can find upload timestamp.

• Some candidates needed to rely on the in-case-of-emergencyies e-mail address. These
(partial) submissions are attached to the Inspera upload. When such an attachment
makes for conflicting versions of a particular answer, it is most likely that the attach-
ment shall be taken to supersede the Inspera upload, but the committee must exercise
judgement and could consult the Department for further technical information.

A correction during the exam: Problem 1, as noted in the margin. Graders should
discuss whether this could have had any impact – given the answers, and the fact that the
issue was only reported to teacher as late as 45 minutes before deadline despite concerning
problem 1. The announcement was made in Canvas 13:46.
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Problem 1 of 5. Suggested weight: 15 percent Take for granted that the equation
system

4xa + y2x3/4 − xp/a = 0

(1− 4a)x7/4y + ax3/4 − yw = 0

determines continuously differentiable functions x = x(a, p, q)) and y = y(a, p, w) around
Typo:
should be
x(a, p, q)the point where x = y = p = 1, a = 1/5, w = 2/5.

(a) Differentiate the system.
(Possible hint: certain terms may benefit from so-called logarithmic differentiation.)

(b) Calculate
∂x

∂a
(1
5
, 1, 2

5
).

How to solve:

(a) Differentiating the system yields

4axa−1 dx+ (4xa lnx) da+ 2yx3/4 dy +
3

4
y2x−1/4 dx− p

a
dx− x

a
dp+

xp

a2
da = 0 and

−4x7/4y da+ (1− 4a)
7

4
x3/4y dx+ (1− 4a)x7/4dy + x3/4da+

3

4
ax−1/4dx− w dy − y dw

= 0

(It is OK to leave it like this without gathering terms.)

(b) Put dw = dp = 0 and insert the point coordinates given:

4 · 1
5
dx+ 0 + 2 dy +

3

4
dx− 5 dx+ 25 da = 0

−4 da+ (1− 4

5
)
7

4
dx+ (1− 4

5
) dy + da+

3

20
dx− 2

5
dy − 0 = 0

To get rid of denominators, scale both equations by 20. Order terms to get

−69 dx+ 40 dy + 500 da = 0

−60 da+ 10 dx− 4 dy = 0

Adding 10 of the latter to the former eliminates dy and yields (100 − 69)dx +
(500− 600)da = 0 so that the answer is 100/31.
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Problem 2 of 5. Suggested weight: 25 percent Throughout this problem, the
prime symbol denotes matrix transpose and I is the 3× 3 identity matrix.

For each real q, let Aq =

 q 1 0
2 q −3
−4 0 6

 and B =

3 2 1
2 0 0
1 0 0

. Denote by vq =

 q
2
−4


the 1st column of Aq.

(a) • Calculate Aq

(
1
0
0

)
and AqB and (Aq − qI)(qB − I) or point out that they are

not defined.

• It is a fact that element (2, 3) of AqB equals element (3, 2) of BA′q. How to see
that from the rules of matrix products, without calculating and comparing?

(b) • Explain, without calculating any cofactors, why the determinant of A0 is zero.

• Show that there is no nonzero integer q such that the determinant of Aq equals
zero. (In this bullet item you are allowed to calculate cofactors.)

(c) For what value(s) – if any! – of q will the equation system Aqx = vq have no solution,
resp. precisely one solution, resp. more than one solution? Here, x is the unknown.

(d) Pick (your choice!) q as an integer ≥ 5. Invert Aq, for that choice of q.

On the solution

(a) Notes on part (a): The first bullet item is intended to catch those who think matrix
multiplication is performed elementwise. Also one can take note that the first question
shows that there is a solution to the equation system in part (c). The second bullet
item uses the symmetry of B.

• Aq

(
1
0
0

)
is the first column of Aq, i.e. = vq. (this suffices for this question, but

expect answers to look different.).

AqB =

 3q + 2 + 0 2q q
3 · 2 + 2q − 3 2 · 2 2
−4 · 3 + 0 + 6 −4 · 2 4

 =

3q + 2 2q q
3 + 2q 4 2
−6 −8 −4


(Aq − qI)(qB− I) = qAqB− q2B−Aq + qI

=

3q2 + 2q 2q2 q2

3q + 2q2 4q 2q
−6q −8q −4q

−
3q2 2q2 q2

2q2 0 0
q2 0 0

−
 q 1 0

2 q −3
−4 0 6

+

q 0 0
0 q 0
0 0 q


=

 2q −1 0
3q − 2 4q 2q + 3

−q2 − 6q + 4 −8q −3q − 6
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• Element (2, 3) of AqB equals element (3, 2) of (AqB)′, which equals B′A′q,
and B′ = B.

(b) • If q = 0 the last two rows are proportional.
(Equally good is to point out that the first and the last column are proportional.)

• Cofactor expansion along the first row yields q
∣∣ q −3
0 6

∣∣− 1
∣∣ 2 −3
4 6 + 0 = 6q2 − 0

is zero only if q = 0.

(c) By (b), there is precisely one solution if and only if q 6= 0. It remains to check
whether q = 0 yields solution at all (if so, there are infinitely many); from (a),
one solution is (1, 0, 0)′ and so there are infinitely many solutions when q = 0.

(d) Let q = 5. We already have two cofactors, so we calculate the full matrix:

K =

 6q 0 0− (−4q)
−(6− 0) 6q − 0 −(0− (−4))
−3− 0 −(−3q − 0) q2 − 2

 (q=5)
=

30 0 20
−6 30 −4
−3 15 23


and so A−15 =

1

6 · 52
K′5 =

1

150

30 −6 −3
0 30 15
20 −4 23


Note: The example used q = 5 because smaller numbers would tend to be the default.
Maybe 8 is easier for Gaussian elimination. The adjugate isn’t that hard for general q

either, as seen above, so the inverse would for every q 6= 0 turn out as 1
6q2

( 6q −6 −3
0 6q 3q
4q −4 q2−2

)
.

5



Problem 3 of 5. Suggested weight: 20 percent

(a) In this part, you are allowed to manipulate functions before and after antidifferenti-
ating, but there is no score for differentiating the right-hand side.

• Use the substitution u = 1−e−x to show that
∫
(ex−1)−1dx = C1+ln

∣∣1−e−x∣∣
• Show by antidifferentiation that there exists a base number B (constant!) such

that
∫

logB(y
3) dy = C2 + 36y ln

y

e
.

For part (b), let B be the number as in part (a) – note that you are not required to insert
for it, you can just write it as “B”.
(b) Consider the differential equation ẋ = (ex − 1) logB(t

3).
Find the following two particular solutions:
• The one for which x(e) = 1.
• The one for which x(e) = 0.

Notes: Part (a) requires a bit of manipulating exp and log, and that is intentionally
part of the question. Part (b): The lectures and hand-ins have repeatedly urged to
check for zero before dividing – with «separating» as formal division used as an example
on how to «lose» solutions – that I found it only fair to reward those who paid attention.

Solution:

(a) • u = 1 − e−x yields du = e−xdx and 1
ex−1dx = e−xdx

1−e−x = du
u
. Integrating,∫

1
u
du = C1 + ln |u| = C1 + ln |1− e−x|.

• logB(y
3) = 3

lnB
ln y and ln y has an antiderivative y ln y− y. The right-hand

side can be written C2 + 36y(ln y − ln e) = C2 + 36y(ln y − 1), so it is OK
with B such that 3

lnB
= 36 (i.e. B = e1/12).

(b) Separable differential equation with constant solution where ex−1 = 0, i.e. x ≡ 0.
Therefore, x(t) ≡ 0 is the answer to the second bullet item.
For the other (i.e. first bullet item) particular solution, we separate into dx

ex−1 =

logB(t
3) dt, and integrate using (a): ln |1− e−x| = C + 36t ln(t/e) with C deter-

mined by ln |1− e−1| = C + 36 ln(e/e) and ln(e/e) = 0. We exponentiate:

|1− e−x| = (1− e−1) · e36t ln(t/e) =

and when x = 1, |1 − e−x| = 1 − e−x so we can remove the absolute value bars
and get e−x = 1− (1− e−1)(t/e)36t. Apply ln and flip sign:

x(t) = − ln
(
1− (1− e−1)(t/e)36t

)
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Problem 4 of 5. Suggested weight: 25 percent For each constant a ∈ (0, 1), define
the function f(K,L) =

√
KaL1−a + a · (KL)1/4.

(a) It is a fact that the sum of concave functions is concave. Show that f is concave.
You are allowed to use known properties of the most well-known production functions,
as long as you point out that you are in the applicable parameter range.

Consider from now on the maximization problem

max f(K,L) subject to K + L ≤ 2, K ≥ a, L ≥ a (P)

(b) State the Kuhn–Tucker conditions associated with problem (P).

(c) Without actually solving, do we know enough to tell:

• whether any point (K̂, L̂) satisfying the Kuhn–Tucker conditions – provided it
exists! – must be optimal?

• whether any such point (K̂, L̂) satisfying the Kuhn–Tucker conditions does ex-
ist?

(You can take for granted that if a maximum exists, the Kuhn–Tucker conditions
must hold there.)

(d) When a = 1/2, you can take for granted that the point (1, 1) is optimal (and no
other point is optimal). Approximately how much does would optimal value change
if a were reduced to 0.48?

Notes first: (a) The question is formulated that way because some students would
likely take as known that Cobb–Douglas are concave with the right parameters. It was
intended to save others the time they might have taken to calculate second derivatives.
(b) ff.: Because the literature is a bit ambiguous as to whether the condition set
with the «Kuhn–Tucker» name includes admissibility, one must give a bit of leeway as
long as the students are doing the right thing. (c) Constraint qualifications are not on
curriculum, so the conditions are taken as necessary without any mention of neither CQ
or Slater. The extreme value theorem has arguably been stressed more than sufficiency
in this course (because it isn’t obvious to all students that the extreme value theorem
applies in a single variable too, and therefore a few of those problems were given as
well). (d): Application of the full envelope theorem – where the parameter enters both
in the objective and the constraints – might be the hardest question on this exam.
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Solution:

(a)
√
KaL1−a = Ka/2L(1−a)/2 is Cobb–Douglas, sum of exponents = 1/2, and is

concave. The same is the case for a · (KL)1/4 = aK1/4L1/4.

(b) Let the Lagrangian be F (K,L) = Ka/2L(1−a)/2 + aK1/4L1/4 − λ(K + L − 2) −
γ(a−K)− β(a− L). The Kuhn–Tucker conditions read:

0 =
a

2
Ka/2−1L(1−a)/2 +

1

4
K−3/4L1/4 − λ+ γ (1)

0 =
1− a
2

Ka/2L−a/2−1/2 +
a

4
K1/4L−3/4 − λ+ β (2)

λ ≥ 0 with = 0 if K + L < 2 (3)
γ ≥ 0 with γ = 0 if K > a (4)
β ≥ 0 with β = 0 if L > a (5)

(or equivalent formulations. E.g. the latter can be written as β = 0 = β(L− a).)

(c) Affirmative for both questions: The admissible set is a closed triangle, so it is
bounded, and the function is defined and continuous there. So the extreme value
theorem grants that a maximum exists, and Kuhn–Tucker conditions must hold
there. Conversely, if the conditions hold at some admissible point, the concavity
of the Lagrangian implies that it solves the problem.
(Note: it is concavity of the Lagrangian, which follows from linearity of the func-
tions K + L− 2, a−K and a− L together with the concavity of f .)

(d) The envelope theorem. Using logarithmic differentiation, we have:

∂

∂a

[
Ka/2L(1−a)/2 + aK1/4L1/4 − λ(K + L− 2)− γ(a−K)− β(a− L)

]
= Ka/2L(1−a)/2 ∂

∂a

[a
2
lnK +

1− a
2

lnL
]
+K1/4L1/4 − γ − β

which when we insert K = L = 1 reduces to 1 · [1
2
ln 1− 1

2
ln 1] + 1− γ − β, and

γ = β = 0 because K = 1 > a and L = 1 > a. So the change is ≈ (0.48− 1
2
) · 1 =

−0.02.
(Note that one can not pretend the constraints don’t exist! A correct answer needs
«both 1− γ − β and applying the Kuhn–Tucker conditions to find γ = β = 0».
There is room for simplification by inserting (K,L) = (1, 1) first, as we are not asked for
a general expression for the derivative wrt. a; we only need the partial change in a from
the given (K,L, λ, γ, β). We get ∂

∂a

[
1+a·1−λ(2−2)−γ(a−K)−β(a−L)

]
= 1−γ−β = 1

again. This approach is «dangerous» unless you know precisely what you are doing.)
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Problem 5 of 5. Suggested weight: 15 percent For each constant r > 0, let the

function g(x) =
4x

1 + x2
ln(e+ rx2)− (1 + x2)e−rx be defined for all real x.

(a) Determine lim
x→−∞

g(x) and show that lim
x→+∞

g(x) = 0

(b) Show that g has a zero x0 ∈ (0, 1).

Notes:

• It was deliberate that the last-in-the-set question in the problem set would only
need one sheet to be scanned and uploaded in the zeitnot. (Update: I was informed
that this did not materialize and that several papers spent multiple pages on this.)

• The reason for asking for both limits in (a), was to easier be able to identify those
who just claim that the exponential will win. That is also the reason for the log
term – which is ln([nonlinear]) to call for more thought.

• Of course there are fancy ways to handle the terms here: the first can be written
as 4 x2

1+x2 · ln(e+rx2)
x

where x2

1+x2 = 1
1+x−2 → 1. Also the x → −∞ limit follows

easily if one observes that for x < 0, g(x) = [something negative]−(1+x2)e−rx <
−(1 + x2)e−rx which → −(+∞) · (+∞). The below proposed solution does not
aim at clever shortcuts.

• Upon applying l’Hôpital’s rule, one must check that it does indeed apply.

Solution:

(a) For both limits, the term lim 4x
1+x2 ln(e + rx2) is (plus/minus) «∞∞», and we can

apply l’Hôpital to get 4 lim
ln(e+rx2)+ x·2rx

e+rx2

2x
. The term

ln(e+rx2)+ x·2rx
e+rx2

2x
equals 1 r

e/x+rx

which → 0, while 2 lim ln(e+rx2)
x

is again (plus/minus) «∞∞» and equals 2 lim 2rx
e+rx2

which as we just saw is 0. Therefore:

lim
x→−∞

g(x) = 0− lim
x→−∞

(1 + x2)e−rx = −∞ ·∞ = −∞;

lim
x→+∞

g(x) = 0− lim
x→+∞

1 + x2

erx
is [polynomial growth]

[exp growth] and therefore also zero as should
be shown. (Also confirmed by l’Hôpital twice.)

(b) g(0) = 0− 1 · e0 = −1 < 0 while g(1) = 4
2
ln(e+ r)− 2e−r = 2 · [ln(e+ r)− e−r] is

> 0 because ln(e + r) > ln e = 1 > e−r. The intermediate value theorem grants
a zero in (0, 1).

9


