ECON3120/4120 Mathematics $\mathbf{2}^{\text { }}$

December 7th 2021, 1500-1900 (4 hrs). There are 2 pages of problems to be solved. Support material: "Rules and formulas" attachment ${ }^{t}$, and both the approved calculators.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.

Problem 1 Throughout Problem 1, a, b, c, d, h, u, v, w are real constants with $a d \neq b c$ and $h=\frac{1}{a d-b c}$. Let $\mathbf{A}=\left(\begin{array}{ccc}a & 0 & b \\ c & 0 & d \\ 0 & h & 0\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}u \\ v \\ w\end{array}\right)$. The prime symbol denotes transposition.
(a) For the matrix products $\mathbf{A}^{2}, \mathbf{r}^{\prime} \mathbf{A}, \mathbf{r r}$ and $\mathbf{r r}^{\prime}$: Calculate those which are well-defined, and explain why the others are not well-defined.
(b) For A, r and those matrices which were well-defined in part (a):

Calculate its determinant, or explain why the determinant is not well-defined.
(c) Use parts (a) and (b) to decide for what value(s) of the constants (if any!) \mathbf{A}^{-1} will:
(i) exist;
(ii) equal \mathbf{A};
(iii) equal \mathbf{A}^{2} (hint: determinants!)
(If you could not complete (a) and (b), you can get partial score for explaining what you would have done had you had the answers.)
(d) Suppose \mathbf{x} and the constants are such that \mathbf{x} is the unique solution of the equation system $\mathbf{A x}=\mathbf{r}$. Find the first element x_{1}.

[^0]
Problem 2

(a) - Show that $\int \log _{B} t d t=C+\log _{B}\left((t / e)^{t}\right)$ when the base number B equals e.

- Does the formula hold for any other base numbers $B>1$?
(b) Show that there is a $T>1$ such that $\quad \int_{1 / 2}^{T} \ln t d t=0$. (You are not asked to find T.)
(c) Does $\int_{1}^{0} \ln t d t$ (i) converge or (ii) diverge to $+\infty$ or (iii) diverge to $-\infty$ or (iv) neither?
(d) Write $(\ln t)^{2}$ as $u(t) v^{\prime}(t)$ where $u(t)=v^{\prime}(t)=\ln t$, and calculate $\quad \int(\ln t)^{2} d t \quad$ using integration by parts. (After integrating by parts, you can use (a).)
(e) The differential equation $\dot{x}+a x=2^{t} \ln t$ can be solved (in this course) for one nonzero constant a. Find that a, and find the particular solution such that $x(1)=1 / a$.

Problem 3

(a) Show that $\left(x_{1}, y_{1}\right)=(1,2)$ is a saddle point for the function $h(x, y)=x y^{3}-4 \cdot\left(x^{2}+3 y\right)$.

Let $r>0$ be a constant. Consider now the problems

$$
\begin{array}{lll}
\max x y^{3} & \text { subject to } & \frac{1}{7}\left(x^{2}+3 y\right)=r \\
\max x y^{3} & \text { subject to } & \frac{1}{7}\left(x^{2}+3 y\right) \leq r \tag{K}
\end{array}
$$

(b) - State the Lagrange conditions associated with problem (L).

- State the Kuhn-Tucker conditions associated with problem (K).
(c) Suppose $r=1$. For each of the points $\left(x_{1}, y_{1}\right)=(1,2)$ (as in (a)) and $\left(x_{2}, y_{2}\right)=(-1,2)$:
- Verify that the point satisfies the Lagrange conditions associated with problem (L).
- Check the point against the Kuhn-Tucker conditions associated with problem (K).
(d) Points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ both satisfy $x^{2}=r$. Is there any admissible point (x, y) satisfying the Kuhn-Tucker conditions associated with problem (K), but with $x^{2} \neq r$?

Consider two modifications of (K) as follows (note, point $(x, y)=(0, r)$ is admissible): $\max / \min x y^{3}+\frac{(\ln r)^{2}}{\ln (e+x)} \quad$ subject to $\quad \frac{x^{2}+3 y}{7} \leq r, \quad x \geq-\frac{e}{2}, \quad y \geq r \quad\left(\mathrm{P}_{\max } / \mathrm{P}_{\min }\right)$
(e) Pick one of the problems $(\mathrm{K}),\left(\mathrm{P}_{\max }\right),\left(\mathrm{P}_{\min }\right)$ and show that it has a solution for every constant $r>0$. (It is part of the question to select one which the course enables you to show. There could be solution to more than one.)
(f) Take for granted that when $r=1$, point $\left(x_{1}, y_{1}\right)$ solves problem ($\mathrm{P}_{\max }$) and point $\left(x_{2}, y_{2}\right)$ solves problem $\left(\mathrm{P}_{\min }\right)$. Pick one of these, and approximate how much the optimal value function changes if r changes by $1 / 2021$. (Do not care about the sign of the change.)

[^0]: ${ }^{*}$ Corrected version: This previous exams repository is intended for future students' exam preparations, and this version has been amended for that use. See the solution note.
 ${ }^{\dagger}$ Same attachment as to the 2019 exam (as announced in advance). Attachment omitted from this version.

