University of Oslo / Department of Economics

English version only

ECON3120/4120 Mathematics 2*

December 7th 2021, 1500–1900 (4 hrs). There are 2 pages of problems to be solved. Support material: "Rules and formulas" attachment[†], and both the approved calculators.

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.

Problem 1 Throughout Problem 1, a, b, c, d, h, u, v, w are real constants with $ad \neq bc$ and $h = \frac{1}{ad - bc}$. Let $\mathbf{A} = \begin{pmatrix} a & 0 & b \\ c & 0 & d \\ 0 & h & 0 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}$. The prime symbol denotes transposition.

- (a) For the matrix products \mathbf{A}^2 , $\mathbf{r'A}$, \mathbf{rr} and $\mathbf{rr'}$: Calculate those which are well-defined, and explain why the others are not well-defined.
- (b) For A, r and those matrices which were well-defined in part (a):Calculate its determinant, or explain why the determinant is not well-defined.
- (c) Use parts (a) and (b) to decide for what value(s) of the constants (if any!) A⁻¹ will:
 (i) exist; (ii) equal A; (iii) equal A² (hint: determinants!)
 (If you could not complete (a) and (b), you can get partial score for explaining what you would have done had you had the answers.)
- (d) Suppose \mathbf{x} and the constants are such that \mathbf{x} is the *unique* solution of the equation system $\mathbf{A}\mathbf{x} = \mathbf{r}$. Find the first element x_1 .

^{*}Corrected version: This previous exams repository is intended for future students' exam preparations, and this version has been amended for that use. See the solution note.

 $^{^{\}dagger}$ Same attachment as to the 2019 exam (as announced in advance). Attachment omitted from this version.

Problem 2

- Show that $\int \log_B t \, dt = C + \log_B \left((t/e)^t \right)$ when the base number B equals e. (a) • Does the formula hold for any *other* base numbers B > 1?
- (b) Show that there is a T > 1 such that $\int_{1/2}^{T} \ln t \, dt = 0$. (You are not asked to find T.) (c) Does $\int_{1}^{0} \ln t \, dt$ (i) converge or (ii) diverge to $+\infty$ or (iii) diverge to $-\infty$ or (iv) neither?
- (d) Write $(\ln t)^2$ as u(t)v'(t) where $u(t) = v'(t) = \ln t$, and calculate $\int \left(\ln t\right)^2 dt$ using integration by parts. (After integrating by parts, you can use (a).)
- (e) The differential equation $\dot{x} + ax = 2^t \ln t$ can be solved (in this course) for *one* nonzero constant a. Find that a, and find the particular solution such that x(1) = 1/a.

Problem 3

(a) Show that $(x_1, y_1) = (1, 2)$ is a saddle point for the function $h(x, y) = xy^3 - 4 \cdot (x^2 + 3y)$. Let r > 0 be a constant. Consider now the problems

max
$$xy^3$$
 subject to $\frac{1}{7}(x^2+3y) = r$ (L)

$$\max xy^3 \quad \text{subject to} \quad \frac{1}{7}(x^2 + 3y) = r \tag{L}$$
$$\max xy^3 \quad \text{subject to} \quad \frac{1}{7}(x^2 + 3y) \le r \tag{K}$$

- (b) • State the Lagrange conditions associated with problem (L).
 - State the Kuhn–Tucker conditions associated with problem (K).
- (c) Suppose r = 1. For each of the points $(x_1, y_1) = (1, 2)$ (as in (a)) and $(x_2, y_2) = (-1, 2)$:
 - Verify that the point satisfies the Lagrange conditions associated with problem (L).
 - Check the point against the Kuhn–Tucker conditions associated with problem (K).
- (d) Points (x_1, y_1) and (x_2, y_2) both satisfy $x^2 = r$. Is there any admissible point (x, y)satisfying the Kuhn–Tucker conditions associated with problem (K), but with $x^2 \neq r$?

Consider two modifications of (K) as follows (note, point (x, y) = (0, r) is admissible):

$$\max / \min xy^3 + \frac{(\ln r)^2}{\ln(e+x)} \quad \text{subject to} \quad \frac{x^2 + 3y}{7} \le r, \quad x \ge -\frac{e}{2}, \quad y \ge r \qquad (\mathsf{P}_{\max} / \mathsf{P}_{\min})$$

- (e) Pick one of the problems (K), (P_{max}) , (P_{min}) and show that it has a solution for every (It is part of the question to select one which the course enables you constant r > 0. to show. There could be solution to more than one.)
- (f) Take for granted that when r = 1, point (x_1, y_1) solves problem (P_{max}) and point (x_2, y_2) solves problem (P_{min}). Pick one of these, and approximate how much the optimal value function changes if r changes by 1/2021. (Do not care about the sign of the change.)

(End of problem set. Attachment: Rules and formulas.)