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ECON3120/4120 Mathematics 2
Postponed exam Jan. 13 2022 0900-1300. There are 2 pages of problems to be solved.
Support material: “Rules and formulas” attachment, and both the approved calculators.

• You are required to state reasons for all your answers.

• You are permitted to use any information stated in an earlier enumerated item
(e.g. “(a)”) to solve a later one (e.g. “(c)”), regardless of whether you managed
to answer the former. A later item does not necessarily require answers from or
information given in a previous one.

Problem 1 Take for granted that the following equation system determines continu-
ously differentiable functions x = x(s, t) and y = y(s, t) around the point where (s, t, x, y) =
(4, 3, 2, 1):

x+ yt + ln(x− 1) + ln y = t

txy + et−x−y = s+ t

(a) Differentiate the system (i.e., calculate differentials).

(b) Calculate
∂y

∂t
(4, 3).

Problem 2 For each constant t let At =



1 2 1
t −3 1
0 2 0




(a) Calculate A0A0
′ (this only for t = 0) and the determinant |AtAt

′ At|
(The prime symbol denotes matrix transpose.)

(b) Pick a t such that A−1
t exists (your choice!), and invert At.

Problem 3
(a) Use the substitution u = ex − 1 to show that

∫
1

1− e−x
dx = C + ln

∣∣ex − 1
∣∣.

(If unable to show it by antidifferentiation using this particular substitution, show it
by any means you like for up to half score.)

(b) Find the general solution of the differential equation ẋ = (1− e−x) · (−t−2).
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Problem 4 For each constant r > 0, define f(t) = 2rt+ ln(2022 +
√
t)− e2t−

√
t.

Here, f is defined for all t ≥ 0.

(a) • Calculate lim
t→+∞

f ′(t). (Note, it is f ′ and not f .)

• Show that lim
t→+∞

f(t) = −∞. Hint: lim
t→+∞

f(t)

et
is helpful, and worth partial

score; consider positive and negative terms separately!

(b) Show that f has a zero z. You are not asked to solve z = zr out for r.

In the rest of Problem 4, take for granted that there is only one zero z for each r.

(c) Show that f has a global maximum τ , and that τ ∈ (0, z).

Let A = A(r) be the area under the graph up to z (that is, more precisely: the area
bounded by both axes, the graph of f , and the vertical line t = z).

(d) Calculate A′(r) and express it with no integral sign. (It is possible to express A′(r) in
terms of z only, and again you are not asked to solve z out for r.)

Problem 5 Let q > 0 be constant and let f(x, y) = x5/4y3/2. Consider the problems

max f(x, y) subject to y2 + x8 − ln(1 + x3) = q (L)
max f(x, y) subject to y2 + x8 − ln(1 + x3) ≤ q and x ≤ q (K)

Note that both x and y are nonnegative due to the exponents 5/4 and 3/2. You are not
asked to solve these problems (and you should not try).

(a) State the Lagrange conditions associated with problem (L), and state the Kuhn–Tucker
conditions associated with problem (K).

(b) Verify that the point (x, y) = (0,
√
q) satisfies the Lagrange conditions associated with

(L), and check whether it satisfies the Kuhn–Tucker conditions associated with (K).

(c) The optimal value of problem (K) depends on q, call it V (q). Show that V ′(q) > 0
whenever V ′(q) exists. (You can calculate as if V ′ always exists.)

(End of problem set. Attachment: Rules and formulas.)
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Attachment: Rules and formulas

A. Exponentials and logarithms For base numbers b > 0 with b 6= 1:

b−x = 1/bx bx±y = bx · b±y bx+yz = bx ·
(
by)z(A1)

for x > 0, y > 0: blogb x = x logb
(
x · yz

)
= logb x+ z logb y logb x =

logc x

logc b
(A2)

We write ln for the natural logarithm loge where e = lim
n→+∞

(1 + 1
n)
n ≈ 2.718281828.

B. Limits Notational convention in this course: when limx→a, x is never equal to a. For
example, in the de�nition f ′(a) = limh→0

f(a+h)−f(a)
h , we let h→ 0 without touching zero.

For a limit to exist (it �converges�), it must be �nite, but we write e.g. limx→0 x
−2 = +∞

(�diverges� to +∞, not converges). Limits that diverge but not to ±∞ are not signi�cant in
Math 2 (example: limn→+∞(−1)n, n runs through the natural numbers only).

Rules If ` = lim
x→a

f(x) and m = lim
x→a

g(x) both exist (implying: are �nite):

lim
x→a

(
f(x)± g(x)

)
= `±m, lim

x→a
(
f(x)g(x)

)
= `m, lim

x→a
f(x)

g(x)
=

`

m
if m 6= 0(B1)

Same validity if the �x→ a� are replaced by x→ a+ or x→ a− or x→ −∞ or x→ +∞.
When ` exists and m does not, the �rst formula holds in the sense that `+[does not exist] does
not exist, `± (+∞) = `±∞ etc.; for the second formula, we can write ` · (+∞) =∞ · sign `
if ` 6= 0 but this inference is invalid if ` = 0. For the third, we have `/(±∞) = 0.

Continuity A function is continuous at some a in its domain, if limx→a f(x) exists and equals
f(limx→a x) = f(a), i.e. limits can be computed inside the function. It is continuous if it is
continuous at every a in its domain. Compositions of continuous functions are continuous.
Note, in Math 2 one does not need to argue that a particular function is continuous where it
is de�ned � as long as one does not make incorrect claims.

l’Hôpital’s rule If the limits lim
x→a

f(x) and lim
x→a

g(x) are both zero, or both diverge to in�nity:

lim
x→a

f(x)

g(x)
= lim

x→a
f ′(x)
g′(x)

(�nite or in�nite; the former diverges if the latter diverges)(B2)

Same validity if the �x → a� are replaced by x → a+ or x → a− or x → −∞ or x → +∞.
You must justify the validity when using l'Hôpital's rule; e.g. as the overbraces in the following
signi�cant examples: For p > 0 and q > 0, using continuity of tp and the di�erentiation rules:

lim
x→+∞

xp

eqx
=
(
=�+∞/+∞�︷ ︸︸ ︷
lim

x→+∞
x

eqx/p

)p
=
(

lim
x→+∞

d
dxx

d
dxe

qx/p

)p
=
(

lim
x→+∞

1
q
pe
qx/p

)p
= 0p = 0(B3)

lim
x→+∞

(lnx)p

xq
=
(
=�+∞/+∞�︷ ︸︸ ︷
lim

x→+∞
lnx

xq/p

)p
=
(

lim
x→+∞

1/x
q
px

q/p−1

)p
=
(p
q

lim
x→+∞

x−q/p
)p

= 0p = 0(B4)

lim
x→0+

xq
∣∣lnx

∣∣p =
∣∣∣

=�−∞/+∞�︷ ︸︸ ︷
lim
x→0+

lnx

x−q/p

∣∣∣
p
=
∣∣∣ lim
x→0+

1/x

− q
px
−1−q/p

∣∣∣
p
=
∣∣∣p
q

lim
x→0+

xq/p
∣∣∣
p
= 0p = 0(B5)

lim f(x) = elim ln f(x) if f(x) > 0; in particular useful if lim f(x) is �1∞�, �∞0�, �00�.(B6)

Rules and formulas, page I



C. Derivatives, differentials, elasticities Provided di�erentiability and no division by 0:

d

dx

(
f(x)± g(x)

)
= f ′(x)± g′(x), d

dx
g(f(x)) = g′(f(x))f ′(x)(C1)

d

dx

(
f(x)g(x)

)
= f ′(x)g(x) + f(x)g′(x)

d

dx

f(x)

g(x)
=
f ′(x)g(x)− f(x)g′(x)

(g(x))2
(C2)

d

dx
xr = rxr−1,

d

dx
|x| = x

|x| =
|x|
x
,

d

dx
ex = ex,

d

dx
ln |x| = 1

x
(C3)

For bx, respectively logb x: Write as ex ln b resp. lnx
ln b . If f(x) > 0, then f ′(x) = f(x) ddx ln f(x).

For inverse functions: d
dxf
−1(x) = 1

f ′(f−1(x))
.

Partial derivatives ∂f
∂xi

: similar rules.

The differential: if z = f(x1, . . . , xn), we de�ne the di�erential dz to be:
∂f
∂x1

(x1, . . . , xn) dx1 + · · ·+ ∂f
∂xn

(x1, . . . , xn) dxn. Di�erentials obey rules similar to derivatives.

Elasticities: Elxf(x) =
x

f(x)f
′(x) for f(x) 6= 0. Can be written as Elxf(x) =

d ln |f(x)|
d ln |x| (which

equals d ln f(x)
d lnx if f > 0 and x > 0). Rules, assuming functions and arguments positive:

Elx

(
f(x) · g(x)r

)
=
d ln f(x) + d

(
r ln g(x)

)

d lnx
= Elxf(x) + rElxg(x)(C4)

Elx

(
f(x) · g(x)h(x)

)
= Elxf(x) + h(x) ·

[
Elxg(x) + ln g(x) · Elxh(x)

]
(C5)

Elxg(f(x)) =
d ln g(u)

d lnu

∣∣∣
u=f(x)

· d ln f(x)
d lnx

(C6)

Elx

(
f(x) + g(x)

)
=
x(f ′(x) + g′(x)
f(x) + g(x)

=
f(x)Elxf(x) + g(x)Elxg(x)

f(x) + g(x)
(C7)

For functions of several variables, Elxi denotes partial elasticity in this course.

Implicit derivatives If (x, z) satis�es F (x1, . . . , xn, z) = C, then
∑

i F
′
xi(x, z)dxi+F

′
z(x, z)dz

= 0 and as long as F ′z(x, z) 6= 0, the equation determines z = g(x) with ∂g
∂xi

= −F ′xi (x,z)
F ′z(x,z)

.

If two equations F (x,K, L) = C and G(x,K, L) = D determine continuously di�erentiable
functions K = K(x) and L = L(x), then the following recipe gives their partial derivatives:

• Di�erentiate the equation system (i.e. calculate di�erentials). Obtain

F ′K(x,K, L) dK + F ′L(x,K, L) dL+
∑

i

F ′xi(x,K, L) dxi = 0

G′K(x,K, L) dK +G′L(x,K, L) dL+
∑

i

G′xi(x,K, L) dxi = 0

• This is a linear equation system in dK and dL, when everything else is taken as constant.
Solve it to obtain the following (you are not required to use matrix notation):

(
dK
dL

)
= −A−1

∑

i

(
F ′xi(x,K, L)
G′xi(x,K, L)

)
dxi where A =

(
F ′K(x,K, L) F ′L(x,K, L)
G′K(x,K, L) G′L(x,K, L)

)
(C8)

• This gives the forms dK =
∑

i κi dxi and dL =
∑

i λi dxi. Then
∂K
∂xi

= κi and
∂L
∂xi

= λi.
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D. Optimization etc. Several of the following statements omit a requirement that the set
S be �convex�, as that is beyond Mathematics 2. (Convex subsets of R = the intervals.)

Some terminology: �open� resp. �closed� set: includes none resp. all of its boundary points.
A �maximum� resp. �minimum� for f : an x∗ (i.e. a point) such that for all x we have
f(x) ≤ f(x∗) (resp. ≥ f(x∗)). The output f(x∗) is called the maximum/minimum value.

E.g., the max/min for f(x) = ax2+ bx+ c (if a 6= 0), is x∗ = −b
2a ; the max/min value is c− b2

4a .

Two existence theorems: Let f be (de�ned and) continuous on the entire set S.

(D1) The extreme value theorem: If S ⊂ Rn is closed, bounded and nonempty, then the
continuous function f has both a maximum and a minimum over S.

(D2) The intermediate value theorem: If n = 1 and S = [a, b] (interval, endpoints contained),
then the continuous function f attains every value between f(a) and f(b) at least once.

Convex and concave function of one variable: Let f be C1, de�ned on an interval.
f is convex (respectively: concave) if f ′ is nondecreasing (resp. nonincreasing) everywhere.
If f is also C2, then it is convex (respectively: concave) if f ′′ ≥ 0 (resp. ≤ 0) everywhere.

Convex and concave function of two variables: Let f be C2 on S ⊆ R2.
Let h(x, y) = f ′′xx(x, y)f

′′
yy(x, y)−

(
f ′′xy(x, y)

)2
(the so-called Hessian determinant.)

If and only if h ≥ 0 and f ′′xx ≥ 0 and f ′′yy ≥ 0 on all of S, then f is convex on S(D3)

If and only if h ≥ 0 and f ′′xx ≤ 0 and f ′′yy ≤ 0 on all of S, then f is concave on S(D4)

If h(x, y) > 0 at some given point, then f ′′xx(x, y) and f
′′
yy(x, y) are nonzero and of same sign:

If h(x, y) > 0 and f ′′xx(x, y) > 0 then f is strictly convex on some open set around (x, y)(D5)

If h(x, y) > 0 > f ′′xx(x, y) then f is strictly concave on some open set around (x, y)(D6)

Convex and concave function of n variables: The following are su�cient (but not necessary)
for convexity/concavity. Let α ≥ 0 and β ≥ 0 be constants.

If f and g are both convex (resp. concave), then αf + βg is convex (resp. concave)(D7)

Unconstrained optimization (i.e. on open set S). First-order condition: stationary point, i.e.
∂f/∂xi equal zero at x∗, all i = 1, . . . , n. Assuming stationary point x∗:

• Global second-order condition: If the function is convex (resp. concave), a stationary
point x∗ is a global min (resp. global max).

• Local second-order condition for n = 2 variables: Let (x∗, y∗) be a stationary point.
If (D5) (resp. (D6)) holds at (x∗, y∗), it is a strict local min (resp. strict local max).
If h(x∗, y∗) < 0, it is neither (a �saddle point�); if h(x∗, y∗) = 0, Math 2 cannot classify.

• 1 variable, f ′(x∗) = 0: f ′′(x∗) > 0⇒ strict local min. f ′′(x∗) < 0⇒ strict local max.

• For 1 variable, the �rst-derivative test (a sign diagram is possibly useful):
Increase x across x∗. If f ′(x) changes sign from negative to positive (resp. positive to
negative), then x∗ is local min (resp. local max). If furthermore x∗ is the only change
of sign of f ′ in the domain of f , the min (resp. max) is global.
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Constrained optimization Problem type: max f(x) subject to constraints gj(x) ≤ bj or = bj
(m constraints, n variables) Form the Lagrangian L(x) = f(x)−∑m

j=1 λj(gj(x)− bj).
Conditions � on the exam, they must be written out!

• Equality-only constraints, m < n: The Lagrange conditions for a point x∗ to solve the
problem, are that there exist numbers λ1, . . . , λm such that x is a stationary point for
L, and the constraints hold. n+m equations for x and the λj .
These conditions are the same for the problem with �min� in place of �max�.

• Inequality-only constraints: The Kuhn�Tucker conditions for x∗ to maximize, are that
there exist nonnegative numbers λ1 ≥ 0, . . . , λm ≥ 0, such that x∗ is a stationary point
for L, and that if gj(x

∗) < bj then λj = 0. That is:

∂L

∂xi
(x∗) = 0 for every i, and for every j: λj ≥ 0 and if gj(x

∗) < bj then λj = 0(D8)

Also the constraints must hold, and you are free to include them or not if asked for the
�Kuhn�Tucker conditions�. (Equivalent formulations are OK.)

Necessity/su�ciency etc.:

• In this course you can take the Lagrange / Kuhn�Tucker conditions as necessary.

• Su�cient conditions: Suppose x∗ satis�es the Lagrange resp. Kuhn�Tucker conditions
with numbers λ1, . . . , λm. Then x∗ solves the maximization problem if:

x∗ maximizes L subject to to the constraints.

This in particular holds if L is concave in x.
(D9)

• If condition (D9) can not be used, then you can compare values provided you have
established existence (e.g. by the extreme value theorem (D1)).

• (Omitted at least in 2019: Local second-order condition for the Lagrange problem.
(D10) Equation number advances by one for placeholder.)

Value functions, derivatives (envelope theorem), shadow prices. If f depends on x (choice
variable) and r (exogenous), then � assuming maximum exists � the maximum valuemaxx f(x, r)
is a function V (r), and the (possibly) maximum (point) x∗ depends on r as well.
The same applies when there are (possibly r-dependent) constraints.

The envelope theorem: in the (possibly constrained) optimization problem, suppose f , the gj
and the bj depend on r. To the precision level of this course:

∂V

∂ri
(r) =

∂f

∂ri
(x∗, r)−

m∑

j=1

λj

( ∂g
∂ri

(x∗, r)− ∂b

∂ri
(r)
)

(D11)

The formula holds for stationary saddle points too, not just max/min. Special cases:

• Unconstrained: m = 0, remove the sum to get ∂V
∂ri

(r) = ∂f
∂ri

(x∗, r).

• Unconstrained, one variable: It also holds for endpoint max/min.

• If there is no r-dependence in f nor gj nor bj , then the value depends on the bj constants,
V = V (b). Then ∂V

∂bj
(b) = λj (the shadow price interpretation).
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E. Integration. All functions on this page are of a single variable t, bounded and piecewise
continuous � until speci�ed otherwise in the Leibniz rule.

Terminology. If F ′ = f on the domain of f , then F is an antiderivative of f . The inde�nite
integral

∫
f(t) dt equals F (t) + C, i.e. the general antiderivative of f ; here, C is an arbitrary

constant. The de�nite integral
∫ b
a f(t) dt equals F (b)− F (a).

Area. When b ≥ a and f ≥ 0 on (a, b), the de�nite integral
∫ b
a f(t)dt equals the area delimited

by the �rst axis and the graph of f between a and b. When f can take either sign, it equals
the part of the area above the axis, minus the part of the area under the axis.

Rules. Derivatives rules (see (C1)�(C3)) can be applied in reverse. For α, β constant:

Sums and scalings:

∫ (
αf(t) + βg(t)

)
dt = α

∫
f(t)dt+ β

∫
g(t)dt(E1)

except:

∫ (
f(t)− f(t)

)
dt =

∫
0 dt = C (rather than zero)(E2)

Integration by parts:

∫
f ′(t)g(t) dt = f(t)g(t)−

∫
f(t)g′(t) dt(E3)

Integration by substitution:

∫
f ′(u(t))u′(t) dt =

∫
f(u) du = F (u(t)) + C(E4)

... in de�nite integrals:

∫ b

a
f ′(u(t))u′(t) dt =

∫ u(b)

u(a)
f(u) du(E5)

You will not be asked to integrate � t−γ
(t−α)(t−β)� when α 6= β, but if it shows up due to your own

calculations: rewrite into α−γ
α−β · 1

t−α −
β−γ
α−β · 1

t−β . (When α = β: write t−γ
(t−α)2 as 1

t−α + α−γ
(t−α)2 .)

Extension: improper integrals. The above assumes bounded integrand and bounded interval.
Otherwise, the integral is de�ned as limits, provided they exist. When the integrand f is
unbounded only near a and/or near b > a:

∫ b

a
f(t) dt = lim

R→a+

∫ c

R
f(t) dt+ lim

S→b−

∫ S

c
f(t) dt (both limits need to exist)(E6)

If f unbounded only near c ∈ (a, b), apply (E6) on each term
∫ c
a f(t) dt and

∫ b
c f(t) dt.

For in�nite intervals:
∫ b

−∞
f(t) dt = lim

R→−∞

∫ b

R
f(t) dt,

∫ +∞

a
f(t) dt = lim

S→+∞

∫ S

a
f(t) dt(E7)

These rules/de�nitions can be combined by splitting into integrals with only one limit transi-
tion each. E.g.

∫ +∞
−∞ f(t) dt =

∫ c
−∞ f(t) dt+

∫ +∞
c f(t) dt for any c.

The Leibniz rule for differentiating integral expressions. Let f be a function of two variables
(x, t) and note that for purposes of integration wrt. t, x is treated as constant. The formula

d

dx

∫ v(x)

u(x)
f(x, t) dt = f(x, v(x))v′(x)− f(x, u(x))u′(x) +

∫ v(x)

u(x)
f ′x(x, t) dt(E8)

is valid in Mathematics 2; also for improper integrals with in�nity treated as constant.
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F. Differential equations. A particular solution is a function that satis�es the di�erential
equation. The general solution is the set of all particular solutions. You are expected to verify
any proposed particular solution. To �nd solutions, you are expected to handle the following
two types of (ordinary �rst-order) di�erential equations for the unknown x = x(t):

Linear differential equations ẋ(t) + a(t)x(t) = b(t). Let A be an antiderivative of a. Then
d
dt

(
eA(t)x(t)

)
= (ẋ(t) + a(t)x(t))eA(t), which = b(t)eA(t), and so eA(t)x(t) =

∫
b(t)eA(t) dt and

x(t) = Ce−A(t) + e−A(t)
∫
b(t)eA(t) dt(F1)

Writing a constant C allows the integral to be any antiderivative, and so the right-hand side is
the sum of any given particular solution e−A(t)

∫
b(t)eA(t) dt and the general solution Ce−A(t)

of the corresponding homogeneous equation (obtained by replacing b by the zero function).
For a particular solution: �nd C. Example with t0 and x(t0) = x0 given: if a 6= 0 and b are
constants, then x(t) = (x0 − b/a)e−a(t−t0) + b/a is of the form (F1) and satis�es x(t0) = x0.

Separable differential equations ẋ(t) = f(t)g(x(t)) (or, which can be rewritten that way).
Note, g depends on x only. The general solution is found by (i) any zero z of g is a constant
particular solution x(t) ≡ z, and (ii) for g 6= 0, separate into dx

g(x) = f(t) dt, integrate
∫

1

g(x)
dx =

∫
f(t) dt which yields H(x) = F (t) + C,(F2)

solving the resulting algebraic equation for x and collecting the contributions from (i) and (ii).
For a particular solution satisfying x(t0) = x0: If g(x0) = 0 (case (i)), the particular solution
is x(t) ≡ x0. Otherwise (case (ii)), �nd C as H(x0)− F (t0) and solve for x.

G. Approximations. Taylor polynomials. Let f be a Ck function of a single variable.
Its kth order approximation around t = a, is the kth order polynomial

pk,a(t) = f(a) + f ′(a) · (t− a) + 1

2
f ′′(a)(t− a)2 + · · ·+ 1

k!
f (k)(a) · (t− a)k(G1)

where f (j) denotes the jth derivative
(
d
dt

)j
f and j! denotes j·(j−1)·· · ··1. If f is also Ck+1, then

for each t there exists a c between t and a such that f(t)−pk,a(t) = f (k+1)(c) · 1
(k+1)!(t−a)k+1.

In n variables: when k = 2, we have

f(x) ≈ f(a) +
n∑

i=1

(xi − ai)
∂f

∂xi
(a) +

1

2

n∑

i=1

n∑

j=1

(xi − ai)(xj − aj)
∂2f

∂xi∂xj
(a)(G2)

or in matrix notation, where the · denotes dot product:

f(x) ≈ f(a) +∇f(a) z+ 1
2 z · (Ha z

)
where z = x− a (column vector),(G3)

∇f(a) =
(
f ′1(a), . . . , f

′
n(a)

)
is the gradient (the row vector of �rst derivatives) at a,

Ha is the Hessian matrix at a: the n× n matrix with elements hij =
∂2f

∂xi ∂xj
(a).

For k = 1, delete the quadratic terms to get f(x) ≈ f(a) +∑n
i=1(xi − ai) ∂f∂xi (a).

For k > 2 in n variables: To approximate f at a given x near a, let g(t) = f(tx+(1− t)a), so
that f(x) = g(1) and f(a) = g(0); then, use the single-variable approximation around t = 0.
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H. Linear algebra and linear equation systems. This note denotes matrices by bold-
face capitals or denotes them by their elements: a matrixA =

(
aij
)
i,j

ofm rows and n columns
has order m × n. Minuscle boldface v indicates order m × 1, a column vector. Order 1 × n
means a row vector and is denoted by u′ where u is n × 1 and the prime symbol ′ denotes
matrix transpose: if A =

(
aij
)
i,j

is m× n, then A′ = B is the n×m matrix with bij = aji.

We write 0 = 0m,n for a matrix with all elements being zero and I = In for the (square) n×n
matrix with elements = 1 on the main diagonal (i.e. if i = j) and 0 elsewhere.
If A is 1x1 we typically don't distinguish between the matrix A and the number a11.

Scaling and addition. A matrix (and hence a vector) can be scaled by a number t, by scaling
each element with t. We write −A for (−1)A. Two matrices of the same order (hence also
two vectors of the same order) are added element-wise.

Rules for scalings and sums. Scalings and sums of m×n matrices obey the rules A+0 = A;
A+B = B+A; (A+B) +C = A+ (B+C) (so we drop the parentheses); A+ (−A) = 0;
t(A+B) = tA+ tB; (s+ t)A = sA+ tA. Subtraction is de�ned as A−B = A+ (−B).

Products. For n-vectors u and v, the dot product u · v is de�ned as u1v1 + · · ·+ unvn. Also
we de�ne u′ · v′ = u · v for row vectors of same order.
The matrix product AB is de�ned i� A resp. B have orders m × n resp. n × p, and is the
m×p matrix C = (cij) with cij = ri ·bj , where r′i is the ith row of A and bj is the jth column
of B. �Matrix division� is not de�ned, though a 1× 1 might be considered as a number.

Rules: products and transposition. Provided the matrix orders admit the operations, we have
(AB)C = A(BC) (so we drop these parentheses); ImA = AIn = A; A(B+C) = AB+AC;
(A+B)C = AC+BC; (A′)′ = A; (A+B)′ = A′ +B′; (tA)′ = tA′; and, (AB)′ = B′A′.

Linear equation systems, general facts. A linear equation system AX = B has either no
solution, unique (= precisely one) solution, or in�nitely many solutions.
If some solution X∗ exists, the general solution � i.e. the set of all solutions � is of the form
X∗ plus the general solution of corresponding homogeneous equation system AX = 0.
A homogeneous system AX = 0 has at least one solution, namely the trivial solution X = 0.

Gaussian elimination. On the augmented coe�cient matrix (A
...B), delete on sight null rows

(i.e. equations that say zero = zero), and apply the elementary row operations:

• Interchanging rows (i.e. equations);

• Scaling a row (i.e. an eq.) by a nonzero number (this to get leading 1's);

• Adding a scaling of one row (i.e. an eq.) to another (this to eliminate below leading 1's)

If and when an equation reads zero = something nonzero, you can declare �no solution�.
Otherwise: If and when you have arrived at row-echelon form where each row has a leading 1
somewhere on the left-hand side, the corresponding variable numbers will be determined once
the remaining d ∈ {0, 1, ...} variables are chosen freely; �solution with d degrees of freedom�.
Special case: d = 0 and unique solution. Then you can eliminate all the way to the left-hand
side being I. That is, an equation system of the form IX = M, with unique solution X = M.
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Determinants and rules for determinants. If A is n × n, we can de�ne its determinant , a
function denoted det(A) or |A|. We say that |A| has order n (or even n×n). The full de�nition
is omitted (not needed!), but: |A| is the sum of n! terms, each being ± the product of precisely
one element from each row&column, the �±� chosen according to (H7) and |In| = 1.

Let A and B both be n× n. Then the following rules apply:

(H1) The cofactor expansion rule determines an order n determinant as a sum of n deter-
minants each of order n − 1: For n = 1, the determinant is the (only!) element of the
matrix. For n > 1, let kij be the cofactor of element i, j, de�ned as (−1)i+j times the
(n− 1)× (n− 1) determinant formed by deleting row i and column j from the matrix.

• Fix any row i; then |A| = ai1ki1 + · · ·+ ainkin

This is called cofactor expansion along the ith row. (Fact: independent of choice of i.)

(H2) |A′| = |A|. Hence cofactor expansion can be performed by arbitrary column as well:
|A| = a1jk1j + · · ·+ anjknj (cofactor expansion along jth column), any j = 1, . . . , n.

(H3) |AB| = |A| · |B|.

(H4) IfA has a row (/a column) of zeroes, or two proportional rows (/columns), then |A| = 0.

(H5) If B is formed from A by scaling one single row (/column) by t, then |B| = t|A|.
In particular, |tA| = tn|A| (scaling all n rows by t).

(H6) If B is formed from A by adding to row #i a scaling of another row #` 6= i (/to column
#j a scaling of another column #` 6= j), then |B| = |A|.

(H7) If B is formed from A by interchanging two rows (/two columns), then |B| = −|A|.

Inverses and rules for inverses. Cramér’s rule. A matrix M is called the inverse of A and
denoted A−1, if AM = MA = I. Then we call A invertible. It must necessarily be square.

The following rules apply if A is n× n (otherwise it cannot be invertible) and B has n rows:

(H8) If AM = In or MA = In then A is invertible with A−1 uniquely given by M.
If so, then (since (AM)′ = M′A′ also is = In): A

′ will be invertible with inverse M′.

(H9) If A is invertible, then M = A−1 is invertible, and with inverse (A−1)−1 = A. Also, for
any natural number k: Ak will be invertible with inverse (A−1)k (this denoted A−k).

(H10) A is invertible if and only if |A| 6= 0. If so, then (by (H3)) |A−1| = 1/|A|.

(H11) AB is invertible if and only if A and B are both invertible. If so, (AB)−1 = B−1A−1.
If furthermore t 6= 0 then tA = A(tI) is invertible with inverse (t−1I−1)A−1 = t−1A−1.

(H12) Formula: LetK = (kij) be the matrix of cofactors ofA (i.e.: each kij as de�ned in (H1)).
Then AK′ = |A| I. So (by (H8) and (H10)): if A is invertible, then A−1 = 1

|A| K
′.

(H13) If and only if A is invertible, then the equation system AX = B has a unique solution
(of same order n× p as B, since A is square), and given by X = A−1B. In particular:
AX = I has unique solution X = A−1 (by (H8)) i� A invertible, no solution if not.

(H14) Cramér's rule: If and only if A is invertible, the unique solution of Ax = b is given by
xi = Di/|A| where Di is the determinant formed by replacing column #i of A by b.
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I. Miscellaneous topics

The quadratic equation Provided a 6= 0, the equation ax2 + bx+ c = 0 has the solutions

x =
−b±

√
b2 − 4ac

2a
though no real solution if b2 < 4ac(I1)

Homogeneous functions. A function f of n variables x = (x1, . . . , xn) is called homogeneous
of degree d if for all t > 0 and all x in the domain of f , we have:

f(tx) = f(tx1, . . . , txn) is de�ned and equals tdf(x).(I2)

In particular, its domain D must be so that x ∈ D ⇔ tx ∈ D for all t > 0. For such a domain
and a C1 function, the following are equivalent:

f homogeneous of degree d ⇐⇒ x1
∂f

∂xi
(x) + · · ·+ xn

∂f

∂xn
(x) = d · f(x) on D(I3)

which provided f(x) 6= 0, is equivalent to El1f(x) + · · ·+ Elnf(x) = d on D.
If f is C1 and homogeneous of degree d, then each ∂f

∂xi
is homogeneous of order d− 1.

If furthermore f is C2, then ∂2f
∂xi ∂xj

homogeneous of order d− 2, every i, j, and

n∑

i=1

n∑

j=1

xixj
∂2f

∂xi ∂xj
(x) = d · (d− 1) · f(x)(I4)

Homothetic functions. Let D ⊆ Rn such that x ∈ D ⇔ tx ∈ D for all t > 0. A function f
de�ned on D is homothetic if

whenever f(u) = f(v), then f(tu) = f(tv) for all t > 0.(I5)

Any homogeneous function is homothetic. If h is homothetic and g is a strictly increasing
function of a single variable, then f(x) = g(h(x)) is also homothetic.

The elasticity of substitution. Fix a level curve F (K,L) = C of a function F of two variables.
The elasticity of substitution σL,K between K and L, measures the relative change in L/K

per relative change in the marginal rate of substitution RL,K =
F ′K(K,L)

F ′L(K,L)
along the level curve:

σL,K = ElRL,K

L

K
=

d ln L
K

d ln
F ′K(K,L)

F ′L(K,L)

where (K,L) such that F (K,L) = C.(I6)

The elasticity of substitution can also be written as:

σL,K =
F ′KF

′
L

KL
· KF

′
K + LF ′L
B

where B = −F ′′KK(F ′L)2 + 2F ′KF
′
LF
′′
KL − F ′′LL(F ′K)2(I7)

The latter denominator B equals

∣∣∣∣∣
0 F ′K F ′L
F ′K F ′′KK F ′′KL

F ′L F ′′KL F ′′LL

∣∣∣∣∣ (the �bordered Hessian� determinant).
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