
ECON3120/4120: autumn 2022 postponed exam, solved

No formal guidelines were produced prior to grading. In case of appeals, an appeals com-
mittee should consult the Department; note however, that problem 4(c) was not intended
to be this much work, and this was known to the original committee which could then
exercise appropriate judgement (expect the right method but not the right calculations) �
and so should any appeals committee do.
This document gives a suggested solution and some further comments.

Problem 1:

(a) [whatever]×1 by 3×[whatever] is not a de�ned product, so 5vA is unde�ned.

The two others are well-de�ned. For the �rst of these, writing out the terms in detail:

4Av = 4

(
1 1 3
2 3 6
2h −1 5h

)(
3
0
−1

)
= 4

(
1 · 3 + 0 + 3 · (−1)
2 · 3 + 0 + 3 · (−1)

2h · 3 + 0 + 5h · (−1)

)
=

(
0
0
4h

)

3AA′ = 3

(
1 1 3
2 3 6
2h −1 5h

)(
1 2 2h
1 3 −1
3 6 5h

)

= 3

(
12 + 12 + 32 23 17h− 1

2 · 1 + 3 · 1 + 6 · 3 22 + 32 + 62 34h− 3
2h · 1− 1 · 3 + 3h · 6 2h · 2− 1 · 3 + 5h · 6 (2h)2 + (−1)2 + (5h)2

)

=

(
33 69 51h− 3
69 147 102h− 9

51h− 3 102h− 9 87h2 + 3

)

A note here on what to include: it would be good to at least include how one element
or row or column appears, and one element that isn't �so obviously zero� that the
grader cannot tell whether you multiplied the right way. In this problem set, at least
AA′ has so many elements that a grader might very well accept a right answer written
straight out then (a �how could you possibly get everything right if you cannot do it
right?�). But on the other hand, if you mess up calculations you still want to convince
a grader that you know the method.

Arguably, the calculations above are then much more than required. Yet a remark
on why the second to last matrix has the elements above the main diagonal written
straight in: AA′ is always a symmetric matrix, so if you calculate the �rst column
�rst and then get to element (1, 2), you will know it equals the 2 · 1 + 3 · 1 + 6 · 3 from
element (2, 1), and can just simplify it to 23 rather than calculate it anew.

(b) [Note about calculating the determinant: It is �ne to calculate it under (b), even
though the solution to follow will use a more direct approach that does not utilize
the determinant � not until part (c) where it turns out you will use it anyway. If
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you prefer to calculate it �rst, say, cofactor expand along the �rst row will get you∣∣ 3 6
−1 5h

∣∣− ∣∣ 2 6
2h 5h

∣∣+3
∣∣ 2 3
2h −1

∣∣ = 15h+6− (−2h)+3(−6h− 2) = −h. So an inverse exists
for all nonzero h, which in part (b) leaves us with only h = 0 to check.]

When h = 0 we see from from (a) that 4Av = 0 and so v and 4v are solutions. Note,
v ̸= 0 so these are two distinct solutions � and more than one, that is �several�.

So, put h = h∗ = 0 and the equation system becomes(
1 1 3
2 3 6
0 −1 0

)(
x1

x2

x3

)
=

(
0
0
0

)

x2 = 0 by the last line. Inserting x2 = 0, the two �rst equations reduce to x1 = −3x3

and 2x2 = −6x3, the latter being a scaling of the former. So we have a solution with
x3 chosen freely, and then the rest will be given: there is one degree of freedom.

(c) The second alternative is correct. If one already calculated the determinant |Ah| = −h,
the likely most straightforward argument is: M−1 exists if and only if 0 ̸= |M|, and
|M| = |hAh| = h3 · (−h), which is nonzero for all but one value (namely 0) of h.

Note, h3|Ah| with power 3 as the matrices are 3 × 3. It is an error to miss the �3�
although it does not alter the conclusion for this problem.

One can also take note that even without having done part (a) or (b), we can rule out
the �rst alternative: for h = 0, M = hAh = 0 which does not have any inverse. (It is
also so that A0 fails to have an inverse, but we can rule out the �rst alternative even
without that fact.) Knowing that there is no inverse for h = 0, the case h ̸= 0 needs to
be checked: the M−1 will exist (and be equal to 1

h
A−1

h ) if and only if A−1
h exists. At

this stage we likely want to calculate the determinant of Ah even if we did not do so
in part (b). It is of course �ne to use any valid method to calculate the determinant,
including the calculation given in the note to part (b), but the sharp eye could want
to expand along the third row to isolate the h terms � beware the sign of the second
term even though it happens to cancel: 2h

∣∣ 1 3
3 6

∣∣ − (−1)
∣∣ 1 3
2 6

∣∣ + 5h
∣∣ 1 1
2 3

∣∣. The second of
these determinants vanishes, and if one has already spotted that h = 0 should yield
zero, it should; if it didn't, we must have done something wrong. The terms sum to
h
[
2(6− 9) + 5(3− 2) = h · (−1) which is nonzero for all nonzero h, in which case M−1

exists. The answer to part (c) follows.

(d) The problem has free choice among all nonzero h, and we would not be surprised
if the vast majority chose an integer, 1 or possibly −1. Both formula and Gaussian
elimination are perfectly valid. The following solves A1X = I by Gaussian elimination.
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(
1 1 3
2 3 6
−2 −1 −5

∣∣∣∣∣ 1 0 0
0 1 0
0 0 1

)
(−2) of �rst line to second, (+2) of �rst to third

∼

(
1 1 3
0 1 0
0 1 1

∣∣∣∣∣ 1 0 0
−2 1 0
2 0 1

)
Subtract second from last

∼

(
1 1 3
0 1 0
0 0 1

∣∣∣∣∣ 1 0 0
−2 1 0
4 −1 1

)
Subtract from 1st line: second line + 3 of the last line

∼

(
1 0 0
0 1 0
0 0 1

∣∣∣∣∣ 9 2 −3
−2 1 0
4 −1 1

)
left-hand side = I, so right-hand side = the solution.

Problem 2

(a) � The constraints, a ≤ xi ≤ b for all i = 1, 2, 3 and x1 + x2 + x3 ≤ M , de�ne a
closed and bounded set (and nonempty, which is at worst a minor issue in this
course). The objective function is continuous on this set; the ln function will
become unde�ned �at ln 0�, but because xi ≥ a > 0, ln(1+xi) only takes in values
> 1, and so each term is continuous. Hence, by the extreme value theorem, there
does exist a maximium (and also a minimum).

� Moreover, the objective function is increasing in both x1, x2 and x3, so if we can

we will increase at least one of them. We cannot choose all of them = b, for then
the sum would be 3b and we are given that 3b > M . So if x1 + x2 + x3 < M ,
then at least one of the xi would have to be < b and we can increase capacity one
month (or more) and pro�t strictly more. Hence a point with x1 + x2 + x3 < M
can not be optimal.

(b) The problem is �almost symmetric� only with di�erent weights on the pro�t-function
for each month. To simplify (in this note, it is not expected on the exam) we introduce
α1 = 4, α2 = 4 and α3 = 2 to write the Lagrangian as

L =
3∑

i=1

αi ln(xi + 1)− λ

(
3∑

i=1

xi −M

)
+

3∑
i=1

γi(xi − a)−
3∑

i=1

µi(xi − b)

� Conditions. Three �rst-order conditions, one for each variable:

αi

xi + 1
− λ+ γi − µi = 0 for i = 1, 2, 3

and seven complementary slackness conditions, one for each multiplier:
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λ ≥ 0 with λ = 0 if x1 + x2 + x3 < M

γi ≥ 0 with γi = 0 if xi > a (for each i = 1, 2, 3)

µi ≥ 0 with µi = 0 if xi < b (for each i = 1, 2, 3)

� Because the constraints xi ≥ a and xi ≤ b cannot both hold with equality, one of
the associated multipliers (or potentially both) must be zero:

If xi > a then µi = 0 (and the product γi · µi will be 0). For µi to be nonzero, we
must have xi = a. But then xi < b and thus γi = 0 and again the product is zero.

(c) We try to �nd a point on this form, with the monthly constraints a ≤ xi ≤ b all
inactive (so the corresponding multipliers are zero). Furthermore, we try one that has
a chance to actually be optimal, so that (from (a) x1 + x2 + x3 = M = 97) � however
you can see already from the following three �rst-order conditions that λ cannot be
zero, and thus x1 + x2 + x3 must be 97 indeed:

4

x1 + 1
= λ,

4

x2 + 1
= λ,

2

x3 + 1
= λ

An elegant way to proceed is to rewrite them as 4 = λ(x1 + 1), 4 = λ(x2 + 1) and
2 = λ(x3 + 1), and add these three up into 10 = λ · (x1 + x2 + x3 + 3). Inserting
x1 + x2 + x3 = 97, this says 100λ = 10 and so λ = 1

10
(nonnegative, OK! ) and

the �rst-order conditions yield 4 = 1
10
(x1 + 1), 4 = 1

10
(x2 + 1), 2 = 1

10
(x3 + 1), i.e.

x1 = x2 = 40 − 1 = 39 and x3 = 20 − 1 = 19. All conditions hold, so we merely
have to check that we are in fact allowed to select this point � which we are, as
a = 10 < x3 < x2 = x1 < 50.

[Note: If you didn't come up with the idea of
∑

λ · (xi + 1) what then? Eliminate λ
(which again must be nonzero, we cannot have 4/(x1+1) = 0) and then eliminate two
of the xi, for example as follows: Put FOCs #1 and #2 together for 4

x1+1
= 4

x2+1
so

x1 = x2. Eliminate x3 as well: x3 + 1 = 2
λ
= 1

2
· 4
λ
= 1

2
(x1 + 1) and so x3 =

1
2
(x1 − 1).

Observing from the FOCs again that λ cannot be zero, so that x1 + x2 + x3 = 97, we
insert for x2 = x1 and x3 =

1
2
(x1−1) to get 97 = x1+x1+

1
2
(x1−1) and 194+1 = 5x1

so that x1 = 39. Then x2 = x1 = 39 and x3 =
1
2
(39− 1) = 19.]

(d) Reducing M by 1
2
will reduce the optimal value V by ≈ 1

2
∂V
∂M

= 1
2
λ = 1

2
· 1
10

= 0.05.
(Reduction, so ∆V ≈ −0.05, but asking �how much� the change is could be answered
in absolute value terms.)

(e) Since the optimum was x3 = 19 when a = 10, we would suspect that the constraint
x3 ≥ 20 will bind, but none of the other monthly constraints.

� For the �rst bullet item, we can actually start working out of this guess: we are
asked to �nd a point satisfying the conditions, and if we have found one � even by
checking �rst the case that happens to be right � we have answered the question,
we do not need to search for more.

4



� For the second bullet item, we can do one out of two:

� Either we can take note that by the extreme value theorem, a solution does
exist; we can then �nd all points satisfying the Kuhn�Tucker conditions �
with or without that �guess� holding true! � and compare them. For this
particular problem there will be only one, but we need to do the work to
show that.

� Or, we have su�cient conditions: the concavity of the Lagrangian with the
numbers for the multipliers inserted. This problem is particularly nice (a so-
called concave program): The objective function is concave, the constraints
are linear, so the Lagrangian will be concave no matter what the multipliers
are.

Thus, if we can �nd a point that satis�es the Kuhn�Tucker conditions �
even if that was by checking the right case �rst � we can point at su�cient
conditions and conclude that yes we have solved the problem.

Having pointed out that su�cient conditions will apply, we only need to �nd a point,
and we can choose to �rst check the case we suspect: Try a minimal x3 = 20, and so
x1 + x2 = 77. The two �rst FOC are as before,

4 = λ(x1 + 1) 4 = λ(x2 + 1)

and lead to x1 = x2, which has to be = 77
2
since x1 = x2 = 77. And 77

2
∈ (20, 50), that

is OK � and µ1 = µ2 = γ1 = γ2 = 0. This gives a positive λ too; below we shall need
that λ = 4

77
2
+1

= 8
79
.

We need to check the �rst-order condition wrt. x3. It says

2

x3 + 1
− λ+ γ3 − µ3 = 0

and with x3 = a, µ3 = 0. With x3 + 1 = a + 1 = 21, this gives γ3 = λ − 2
21
. The

�nal condition to check is that γ3 ≥ 0: But γ3 =
8
79

− 2
21
, and we are given that this is

positive.

Problem 3

(a) With u = ee
t
then

du = ee
t

etdt = u lnu dt which yields dt =
du

u lnu

which we insert:∫
e2t

eet
dt =

∫
(lnu)2

u

du

u lnu
=

∫
lnu

u2
du = − lnu

u
+

∫
1

u2
du = −1

u
(lnu+ 1) + C

using integration by parts. Since lnu = et, substituting back yields C− et+1

eet
as should.
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(b) This is a linear di�erential equation of the form ẋ + ax = b(t) with a = 1 (with an
antiderivative A(t) = t) and eA(t)b(t) = et et

eet
= e2t

eet
which is the integrand in (a). Thus

x(t) = e−A(t)
[
C − e−t + 1

eet

]
= Ce−t − e−t + 1

et+et

or some equivalent form.

Note: The the �C� in the formula is there to take care of the constant of integration
so that you can replace

∫
b(t)eA(t)dt by �an antiderivative� (i.e. without constant). If

you do not catch that point, rename constants (e.g. a Q in the formula) to safeguard
against ending up wrongfully cancelling constants against each other; the di�erence
between two general constants, is a general constant and not �C − C�.

Problem 4

(a)

dR = eH (H ′
K dK +H ′

L dL+H ′
z dz)

= eH
(
a− z

K
dK +

a− z

L
dL− (lnK + lnL) dz

)
dS = (a− z) dR−R dz

= (a− z)eH
(
a− z

K
dK +

a− z

L
dL− (lnK + lnL) dz

)
− eHdz

(b) Note �rst that

dG =
a

K
dK +

b

L
dL− 2(ln z + 1) dz

dH =
a− z

K
dK +

a− z

L
dL− (lnK + lnL) dz

And di�erentiating the �rst and second equations:

aeGdG+ (a− z)eHdH − eHdz = 2a dK

beGdG+ (b− z)eHdH − eHdz = 3w dL+ 3L dw

(c) We want to know how K changes when we only change w (not z, but L is a dependent
variable and will change as well). Thus dz = 0, moreover K = 1/2 and L = 2, and the
equations simpli�es to

dG =
a

K
dK +

b

L
dL = 2a dK +

b

2
dL

dH =
a− z

K
dK +

a− z

L
dL = 2(a− z∗) dK +

a− z∗

2
dL
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Note also that given K and L we can compute

G = (b− a) ln 2− 2z∗ ln z∗

H = (b− a) ln 2

and we also have

aeGdG+ (a− z)eHdH = 2a dK

beGdG+ (b− z)eHdH = 3w dL+ 3L dw

inserting for dG and dH

aeG
(
2a dK +

b

2
dL

)
+ (a− z∗)eH

(
2(a− z∗) dK +

a− z∗

2
dL

)
= 2a dK

beG
(
2a dK +

b

2
dL

)
+ (b− z∗)eH

(
2(a− z∗) dK +

a− z∗

2
dL

)
= 3w dL+ 3L dw

We introduce coe�cients A, B, C and D:

A dK +B dL = 0

C dK +D dL = 3L dw

where

A = 2a2eG + 2(a− z∗)2eH − 2a

B =
ab

2
eG +

(a− z∗)2

2
eG

C = 2abeG + 2(b− z∗)(a− z∗)eH

D =
b2

2
eG +

(b− z∗)(a− z∗)

2
eG − 3w∗

We can eliminate dL. The following way to eliminate, will give the answer on a form
similar to what you get by Cramér's rule: Scale the �rst equation by D and the second
by B, so that both dL coe�cients are BD. Subtract equations to get

(AD −BC) dK = −3B · L dw which yields
∂K

∂w
=

−3B · L
AD −BC

where the coe�cients A, B, C and D are given as functions of w∗ and z∗ (and also
depend on the constants a and b).

Note: this is the situation where one is not expected to consider whether the divisor
(the determinant AD −BC) is nonzero.
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