
ECON3120/4120: The autumn 2022 exam solved

No formal guidelines were produced prior to grading. In case of appeals, an appeals
committee should consult the Department. This document gives a suggested solution and
some comments.

Problem 1:

(a) In order:

uv =

( −1
0
1

)(
4
2
−2

)
is unde�ned

(u has one column and that number doesn't match the number of rows of v)

u′v = ( −1 0 1 )

(
4
2
−2

)
= −6

vw′ =

(
4
2
−2

)
( 0 1 0 ) =

(
0 4 0
0 2 0
0 −2 0

)

Ahu =

(
1 0 2
−h 0 −h
2h 1 −1

)( −1
0
1

)
=

( −1 + 0 + 2
0 + 0 + 0

−2h+ 0− 1

)
=

(
1
0

−2h− 1

)

Ahv =

(
1 0 2
−h 0 −h
2h 1 −1

)(
4
2
−2

)
=

(
4− 4

−4h+ 2h
8h+ 2 + 2

)
=

(
0

−2h
8h+ 4

)

Ahw =

(
1 0 2
−h 0 −h
2h 1 −1

)(
0
1
0

)
=

(
0
0
1

)

We note that that u, v and w make up the columns of M, so we can use the three
latter vectors for the �rst, second and third column of AhM. However you do it, the
result is

AhM =

(
1 0 2
−h 0 −h
2h 1 −1

)( −1 4 0
0 2 1
1 −2 0

)
=

(
1 0 0
0 −2h 0

−2h− 1 8h+ 4 1

)

(b) Here we note from the last question in a) that AhM = I if h = −1/2. Thus it is
natural to choose h = −1/2, as M is the inverse in that case.
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(c) The easiest is likely cofactor expansion along the second column � although in that

case, remember the −1 to get (−1) · 1 ·
∣∣∣∣ 1 2
−h −h

∣∣∣∣ = −(−h+2h) = −h. But any row

or column would do, for example the �rst row:∣∣∣∣∣ 1 0 2
−h 0 −h
2h 1 −1

∣∣∣∣∣ = 1

∣∣∣∣ 0 −h
1 −1

∣∣∣∣− 0 + 2

∣∣∣∣ −h 0
2h 1

∣∣∣∣ = +h− 2h = −h.

As there is no inverse if an only if the determinant is zero, there is no inverse only
when h ̸= 0.

(d) We know that Ah has an inverse when h ̸= 0, in that case each of the equations will
have a solution (and only one each). The only remaining case where we do not yet
know if there is a solution, is when h = 0. We note that for h = 0, Ah reduces to

A0 =

(
1 0 2
0 0 0
0 1 −1

)

and for any vector x, then

A0x =

(
1 0 2
0 0 0
0 1 −1

)(
x1

x2

x3

)
=

(
x1 − 2x3

0
x2 − x3

)

Thus the second element in A0x is zero, so neither A0x = v nor A0x = w can hold
true. It remains to check A0x = u, where the system becomes

A0x =

(
x1 − 2x3

0
x2 − x3

)
=

( −1
0
1

)

For any x3, let x1 = −1− 2x3 and x2 = 1 + x3 and we have a solution. Thus there is
an in�nite number of solutions to A0x = u, one for each choice of x3.

(Remark: It so happens for this particular system that any single variable can be
chosen freely; choose instead x1 and the �rst equation determines x3 and the last then
x2; if instead x2 is chosen, x3 = x2− 1 from the third and x1 = 2x3− 1 = 2(x2− 1)− 1
from the �rst equation.)
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Problem 2

(a) The equation system is

y ln(t+ xs) + exy
2

= 1

yx + ty + x+ s2 = 27

and we di�erentiate it (term by term or variable by variable, your choice) as

ln(t+ xs) dy +
y

t+ xs
( dt+ x ds+ s dx) + exy

2

(y2 dx+ 2yx dy) = 0

yx(ln y dx+
x

y
dy) + y dt+ t dy + dx+ 2s ds = 0

(b) We were given the point (s, t, x, y) = (5, 1, 0, 1), and we want to approximate y(497
100

, 1);
that is, we change s by ds = 3/100 and t by dt = 0 and calculate the approximation
y(497

100
, 1) ≈ y(5, 1) − 3

100
∂y
∂s
|(s,t,x,y)=(5,1,0,1) = 1 − 3

100
∂y
∂s
|(s,t,x,y)=(5,1,0,1). To calculate the

partial derivative at the point, insert (the �0 without any d� are because dt = 0):

ln(1 + 0s)y +
1

1 + 0s
(0 + 0 ds+ 5 dx) + e0(1 dx+ 0 dy) = 0

e0((ln 1) dx+
0

y
dy) + 0 + 1 dy + dx+ 10 ds = 0

Which simpli�es to

6dx = 0

10ds+ dx+ dy = 0

and so dy = −10 ds and ∂y/∂s = −10. Inserting, we get the approximation 1 − 3
100

·
(−10) = 1.3.
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Problem 3

(a) Start with the inde�nite integral
∫
zR−1(1+R ln z)dz. Let w′ = zR−1 and v = 1+R ln z

in order to di�erentiate the latter: v′ = R/z. For an antiderivative w of zR−1, choose
zR/R. We get∫

zR−1(1 +R ln z)dz =
1

R
zR(1 +R ln z)− 1

R

∫
RzR−1dz

=
1

R
zR(1 +R ln z)− 1

R
zR + C = zR ln z + C

Then for the de�nite integral:
[
zR ln z + C

]z=t

z=1
= tR ln t+ C − C = tR ln t as should.

(b) With u = R ln z, du = R
z
dz and so dz = z

R
du. We need to get rid of z; as ln z = u/R,

z = eu/R and dz = eu/R

R
du. We also need zR−1 = (eu/R)R−1 = eu(R−1)R/R. Inserting

into the inde�nite integral
∫
zR−1(1 +R ln z)dz yields∫

zR−1(1 +R ln z)dz =

∫
(1 + u)eu

R−1
R

e
u
R

R
du =

1

R

∫
eu(1 + u)du

since uR−1
R

+ u
R
= u.

The next step would be integration by parts, di�erentiating the (1+ u) and antidi�er-
entiating eu.

(c) ẋ = (1− e−x)1−ln t
t2

is a separable di�erential equation. We can separate by dividing by
1− e−x provided that this is nonzero; it is zero if and only if x = 0, and so already we
have the �rst of the particular solutions asked for: the constant solution x(t) ≡ 0.

For the other particular solution, we separate into ẋ
1−e−x = 1−ln t

t2
to obtain∫

dx

1− e−x
=

∫
1− ln t

t2
dt

For the right hand side, use (a) with R = −1 to get t−1 ln t+ C.

For the left hand side,

∫
dx

1− e−x
=

∫
ex

ex − 1
dx by the hint, and we substitute u =

ex − 1, so du = exdx:
∫

du
u
. An antiderivative of u−1 is ln |u|, substitute back to get

ln |ex − 1| and put this equal to t−1 ln t+ C:

ln |ex − 1| = C +
ln t

t

At t = 1 we have x = ln 2, so that ex(1) − 1 = 2 − 1 = 1; because this is positive, we
want ln(ex − 1) and not ln(1− ex). The left hand side becomes ln 1 = 0 and the right
hand side becomes C + 0/1 = C, so C = 0. Finally we solve ln(ex − 1) = ln t

t
:

ex − 1 = e(ln t)/t = (eln t)1/t = t1/t ⇐⇒ ex = 1 + t1/t ⇐⇒ x = ln(1 + t1/t)
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Problem 4

(a) First we note that px + qy ≤ m, and x ≥ 0; y ≥ 0 de�nes a closed and bounded set
(non-empty too, although that is not the main focus in this course). Since the function
is continuous, there is a maximum by the extreme value theorem. We also know the
function is non-decreasing in x and in y, so if px + qy < m we may increase both x
and y and hence get no lower utility. Thus an interior point cannot be better than one
on the budget line.

(b) Euler's formula gives
xu′

x + yu′
y = d · u

Now, at an interior maximum u′
x = u′

y = 0, and since d > 0, it follows that

u =
1

d

(
xu′

x + yu′
y

)
= 0

(c) Now
u(x, y) = ax+ by + c

To test for homogeneity:

u(tx, ty) = atx+ bty + c and this equals tu(x, y) if and only if c = 0

Then for c = 0 it is homogeneous � and of degree 1.*

The function is homothetic if it is a monotone transformation of a homogenous function.
Adding a constant makes for a strictly increasing transformation (as z + c is strictly
increasing in z), so

ax+ by + c

is a monotone transformation of an homogenous function ax + by. Thus the function
is homogenous of degree 1 if c = 0, and homothetic for all values of c.

(d) The Lagrangian is

L(x, y) = ax+ by + c+ αx+ βy − λ(px+ qy −m)

� The Kuhn�Tucker conditions become:

a+ α− λp = 0

b+ β − λq = 0

α ≥ 0; and with α = 0 if x > 0

β ≥ 0; and with β = 0 if y > 0

λ ≥ 0; and with λ = 0 if px+ qy < m
*This would su�ce, but if you want more detailed that a nonzero c rules out homogeneity � of any degree

� then you can argue as follows: u(tx, ty) = t(ax + by + c) − tc + c = tu(x, y) + (1 − t)c; This being

= tdu(x, y) if and only if tdu(x, y) − tu(x, y) = (1 − t)c identically. Since (1 − t)c does not depend on

(x, y), then neither can (td − t)u(x, y), and the only way to kill the (x, y) dependence is to have d = 1.
Then (1− t)c must be = 0 for all t > 0, and so c = 0 is necessary.

5



� Suppose for contradiction that xy ̸= 0. Then x > 0 and y > 0 so α = 0 and
β = 0. The Kuhn�Tucker conditions reduce to

a = λp

b = λq

Solving for λ and rearranging:

λ =
a

p
=

b

q

But we are given that a
p
> b

q
. As the assumption xy ̸= 0 violates a conditions

stated in the problem, it cannot be true; as xy ̸= 0 must be false that means that
xy = 0 is true.

(e) Note �rst that

a+ α = λp

b+ β = λq

Since α and β are non-negative and a > 0 and b > 0, the left hand sides are strictly
positive. Thus it is impossible to have λ = 0 and thus impossible to have px+ qy < m.
As we know from (d) that xy = 0, that leaves us with two possible solutions:

x = 0 and y =
m

q
and β = 0

y = 0 and x =
m

p
and α = 0

To decide which of this is the solution (and we know from the extreme value theorem

that there is one!), we have one condition at hand, namely that
a

b
>

p

q
. One way to

settle it is to note that

λ =
a+ α

p
=

b+ β

q
and the latter is equivalent to

a+ α

b+ β
=

p

q
.

One of α and β is zero; the other is strictly positive (we cannot have both zero, it
would violate a/b > p/q). Check the two possible cases in turn:

Case α > β = 0: Then
p

q
=

a+ α

b
which is =

a

b
+

α

b
which is >

a

b
, leading to

p

q
>

a

b
which is impossible.

Having eliminated this case, it must be the other (as by the extreme value theorem
we know we have a solution, and nothing else is possible!) But if we were to check
that case, it would yield:

Case β > α = 0: Then
p

q
=

a

b+ β
which is <

a

b
(we divide by something bigger).

Possible indeed!

So the latter case with α = 0 < β solves the problem, and the solution is found at
(x, y) = (m

p
, 0).
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