ECON3120/4120: The autumn 2022 exam solved

No formal guidelines were produced prior to grading. In case of appeals, an appeals committee should consult the Department. This document gives a suggested solution and some comments.

Problem 1:

(a) In order:

$$
\mathbf{u v}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)\left(\begin{array}{c}
4 \\
2 \\
-2
\end{array}\right) \text { is undefined }
$$

(\mathbf{u} has one column and that number doesn't match the number of rows of \mathbf{v})

$$
\begin{gathered}
\mathbf{u}^{\prime} \mathbf{v}=\left(\begin{array}{lll}
-1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
4 \\
2 \\
-2
\end{array}\right)=-6 \\
\mathbf{v w}^{\prime}=\left(\begin{array}{c}
4 \\
2 \\
-2
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 4 & 0 \\
0 & 2 & 0 \\
0 & -2 & 0
\end{array}\right) \\
\mathbf{A}_{h} \mathbf{u}=\left(\begin{array}{ccc}
1 & 0 & 2 \\
-h & 0 & -h \\
2 h & 1 & -1
\end{array}\right)\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1+0+2 \\
0+0+0 \\
-2 h+0-1
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
-2 h-1
\end{array}\right) \\
\mathbf{A}_{h} \mathbf{v}=\left(\begin{array}{ccc}
1 & 0 & 2 \\
-h & 0 & -h \\
2 h & 1 & -1
\end{array}\right)\left(\begin{array}{c}
4 \\
2 \\
-2
\end{array}\right)=\left(\begin{array}{c}
4-4 \\
-4 h+2 h \\
8 h+2+2
\end{array}\right)=\left(\begin{array}{c}
0 \\
-2 h \\
8 h+4
\end{array}\right) \\
\mathbf{A}_{h} \mathbf{w}=\left(\begin{array}{ccc}
1 & 0 & 2 \\
-h & 0 & -h \\
2 h & 1 & -1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{gathered}
$$

We note that that \mathbf{u}, \mathbf{v} and \mathbf{w} make up the columns of \mathbf{M}, so we can use the three latter vectors for the first, second and third column of $\mathbf{A}_{h} \mathbf{M}$. However you do it, the result is

$$
\mathbf{A}_{h} \mathbf{M}=\left(\begin{array}{ccc}
1 & 0 & 2 \\
-h & 0 & -h \\
2 h & 1 & -1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 4 & 0 \\
0 & 2 & 1 \\
1 & -2 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 h & 0 \\
-2 h-1 & 8 h+4 & 1
\end{array}\right)
$$

(b) Here we note from the last question in a) that $\mathbf{A}_{h} \mathbf{M}=\mathbf{I}$ if $h=-1 / 2$. Thus it is natural to choose $h=-1 / 2$, as \mathbf{M} is the inverse in that case.
(c) The easiest is likely cofactor expansion along the second column - although in that case, remember the -1 to get $(-1) \cdot 1 \cdot\left|\begin{array}{cc}1 & 2 \\ -h & -h\end{array}\right|=-(-h+2 h)=-h$. But any row or column would do, for example the first row:

$$
\left|\begin{array}{ccc}
1 & 0 & 2 \\
-h & 0 & -h \\
2 h & 1 & -1
\end{array}\right|=1\left|\begin{array}{cc}
0 & -h \\
1 & -1
\end{array}\right|-0+2\left|\begin{array}{cc}
-h & 0 \\
2 h & 1
\end{array}\right|=+h-2 h=-h .
$$

As there is no inverse if an only if the determinant is zero, there is no inverse only when $h \neq 0$.
(d) We know that \mathbf{A}_{h} has an inverse when $h \neq 0$, in that case each of the equations will have a solution (and only one each). The only remaining case where we do not yet know if there is a solution, is when $h=0$. We note that for $h=0, \mathbf{A}_{h}$ reduces to

$$
\mathbf{A}_{0}=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 0 & 0 \\
0 & 1 & -1
\end{array}\right)
$$

and for any vector \mathbf{x}, then

$$
\mathbf{A}_{0} \mathbf{x}=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 0 & 0 \\
0 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1}-2 x_{3} \\
0 \\
x_{2}-x_{3}
\end{array}\right)
$$

Thus the second element in $\mathbf{A}_{0} \mathbf{x}$ is zero, so neither $\mathbf{A}_{0} \mathbf{x}=\mathbf{v}$ nor $\mathbf{A}_{0} \mathbf{x}=\mathbf{w}$ can hold true. It remains to check $\mathbf{A}_{0} \mathbf{x}=\mathbf{u}$, where the system becomes

$$
\mathbf{A}_{0} \mathbf{x}=\left(\begin{array}{c}
x_{1}-2 x_{3} \\
0 \\
x_{2}-x_{3}
\end{array}\right)=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

For any x_{3}, let $x_{1}=-1-2 x_{3}$ and $x_{2}=1+x_{3}$ and we have a solution. Thus there is an infinite number of solutions to $\mathbf{A}_{0} \mathbf{x}=\mathbf{u}$, one for each choice of x_{3}.
(Remark: It so happens for this particular system that any single variable can be chosen freely; choose instead x_{1} and the first equation determines x_{3} and the last then x_{2}; if instead x_{2} is chosen, $x_{3}=x_{2}-1$ from the third and $x_{1}=2 x_{3}-1=2\left(x_{2}-1\right)-1$ from the first equation.)

Problem 2

(a) The equation system is

$$
\begin{aligned}
y \ln (t+x s)+e^{x y^{2}} & =1 \\
y^{x}+t y+x+s^{2} & =27
\end{aligned}
$$

and we differentiate it (term by term or variable by variable, your choice) as

$$
\begin{aligned}
\ln (t+x s) d y+\frac{y}{t+x s}(d t+x d s+s d x)+e^{x y^{2}}\left(y^{2} d x+2 y x d y\right) & =0 \\
y^{x}\left(\ln y d x+\frac{x}{y} d y\right)+y d t+t d y+d x+2 s d s & =0
\end{aligned}
$$

(b) We were given the point $(s, t, x, y)=(5,1,0,1)$, and we want to approximate $y\left(\frac{497}{100}, 1\right)$; that is, we change s by $d s=3 / 100$ and t by $d t=0$ and calculate the approximation $y\left(\frac{497}{100}, 1\right) \approx y(5,1)-\left.\frac{3}{100} \frac{\partial y}{\partial s}\right|_{(s, t, x, y)=(5,1,0,1)}=1-\left.\frac{3}{100} \frac{\partial y}{\partial s}\right|_{(s, t, x, y)=(5,1,0,1)}$. To calculate the partial derivative at the point, insert (the " 0 without any d " are because $d t=0$):

$$
\begin{aligned}
\ln (1+0 s) y+\frac{1}{1+0 s}(0+0 d s+5 d x)+e^{0}(1 d x+0 d y) & =0 \\
e^{0}\left((\ln 1) d x+\frac{0}{y} d y\right)+0+1 d y+d x+10 d s & =0
\end{aligned}
$$

Which simplifies to

$$
\begin{array}{r}
6 d x=0 \\
10 d s+d x+d y=0
\end{array}
$$

and so $d y=-10 d s$ and $\partial y / \partial s=-10$. Inserting, we get the approximation $1-\frac{3}{100}$. $(-10)=1.3$.

Problem 3

(a) Start with the indefinite integral $\int z^{R-1}(1+R \ln z) d z$. Let $w^{\prime}=z^{R-1}$ and $v=1+R \ln z$ in order to differentiate the latter: $v^{\prime}=R / z$. For an antiderivative w of z^{R-1}, choose z^{R} / R. We get

$$
\begin{aligned}
\int z^{R-1}(1+R \ln z) d z & =\frac{1}{R} z^{R}(1+R \ln z)-\frac{1}{R} \int R z^{R-1} d z \\
& =\frac{1}{R} z^{R}(1+R \ln z)-\frac{1}{R} z^{R}+C=z^{R} \ln z+C
\end{aligned}
$$

Then for the definite integral: $\left[z^{R} \ln z+C\right]_{z=1}^{z=t}=t^{R} \ln t+C-C=t^{R} \ln t$ as should.
(b) With $u=R \ln z, d u=\frac{R}{z} d z$ and so $d z=\frac{z}{R} d u$. We need to get rid of $z ;$ as $\ln z=u / R$, $z=e^{u / R}$ and $d z=\frac{e^{u / R}}{R} d u$. We also need $z^{R-1}=\left(e^{u / R}\right)^{R-1}=e^{u(R-1) R / R}$. Inserting into the indefinite integral $\int z^{R-1}(1+R \ln z) d z$ yields

$$
\int z^{R-1}(1+R \ln z) d z=\int(1+u) e^{u \frac{R-1}{R}} \frac{e^{\frac{u}{R}}}{R} d u=\frac{1}{R} \int e^{u}(1+u) d u
$$

since $u \frac{R-1}{R}+\frac{u}{R}=u$.
The next step would be integration by parts, differentiating the $(1+u)$ and antidifferentiating e^{u}.
(c) $\dot{x}=\left(1-e^{-x}\right) \frac{1-\ln t}{t^{2}}$ is a separable differential equation. We can separate by dividing by $1-e^{-x}$ provided that this is nonzero; it is zero if and only if $x=0$, and so already we have the first of the particular solutions asked for: the constant solution $x(t) \equiv 0$.
For the other particular solution, we separate into $\frac{\dot{x}}{1-e^{-x}}=\frac{1-\ln t}{t^{2}}$ to obtain

$$
\int \frac{d x}{1-e^{-x}}=\int \frac{1-\ln t}{t^{2}} d t
$$

For the right hand side, use (a) with $R=-1$ to get $t^{-1} \ln t+C$.
For the left hand side, $\int \frac{d x}{1-e^{-x}}=\int \frac{e^{x}}{e^{x}-1} d x$ by the hint, and we substitute $u=$ $e^{x}-1$, so $d u=e^{x} d x: \int \frac{d u}{u}$. An antiderivative of u^{-1} is $\ln |u|$, substitute back to get $\ln \left|e^{x}-1\right|$ and put this equal to $t^{-1} \ln t+C$:

$$
\ln \left|e^{x}-1\right|=C+\frac{\ln t}{t}
$$

At $t=1$ we have $x=\ln 2$, so that $e^{x(1)}-1=2-1=1$; because this is positive, we want $\ln \left(e^{x}-1\right)$ and not $\ln \left(1-e^{x}\right)$. The left hand side becomes $\ln 1=0$ and the right hand side becomes $C+0 / 1=C$, so $C=0$. Finally we solve $\ln \left(e^{x}-1\right)=\frac{\ln t}{t}$:

$$
e^{x}-1=e^{(\ln t) / t}=\left(e^{\ln t}\right)^{1 / t}=t^{1 / t} \quad \Longleftrightarrow e^{x}=1+t^{1 / t} \quad \Longleftrightarrow \quad x=\ln \left(1+t^{1 / t}\right)
$$

Problem 4

(a) First we note that $p x+q y \leq m$, and $x \geq 0 ; y \geq 0$ defines a closed and bounded set (non-empty too, although that is not the main focus in this course). Since the function is continuous, there is a maximum by the extreme value theorem. We also know the function is non-decreasing in x and in y, so if $p x+q y<m$ we may increase both x and y and hence get no lower utility. Thus an interior point cannot be better than one on the budget line.
(b) Euler's formula gives

$$
x u_{x}^{\prime}+y u_{y}^{\prime}=d \cdot u
$$

Now, at an interior maximum $u_{x}^{\prime}=u_{y}^{\prime}=0$, and since $d>0$, it follows that

$$
u=\frac{1}{d}\left(x u_{x}^{\prime}+y u_{y}^{\prime}\right)=0
$$

(c) Now

$$
u(x, y)=a x+b y+c
$$

To test for homogeneity:

$$
u(t x, t y)=a t x+b t y+c \text { and this equals } t u(x, y) \text { if and only if } c=0
$$

Then for $c=0$ it is homogeneous - and of degree 1.f.
The function is homothetic if it is a monotone transformation of a homogenous function. Adding a constant makes for a strictly increasing transformation (as $z+c$ is strictly increasing in z), so

$$
a x+b y+c
$$

is a monotone transformation of an homogenous function $a x+b y$. Thus the function is homogenous of degree 1 if $c=0$, and homothetic for all values of c.
(d) The Lagrangian is

$$
L(x, y)=a x+b y+c+\alpha x+\beta y-\lambda(p x+q y-m)
$$

- The Kuhn-Tucker conditions become:

$$
\begin{aligned}
& a+\alpha-\lambda p=0 \\
& b+\beta-\lambda q=0 \\
& \alpha \geq 0 ; \quad \text { and with } \alpha=0 \text { if } x>0 \\
& \beta \geq 0 ; \quad \text { and with } \beta=0 \text { if } y>0 \\
& \lambda \geq 0 ; \quad \text { and with } \lambda=0 \text { if } p x+q y<m
\end{aligned}
$$

[^0]- Suppose for contradiction that $x y \neq 0$. Then $x>0$ and $y>0$ so $\alpha=0$ and $\beta=0$. The Kuhn-Tucker conditions reduce to

$$
\begin{aligned}
a & =\lambda p \\
b & =\lambda q
\end{aligned}
$$

Solving for λ and rearranging:

$$
\lambda=\frac{a}{p}=\frac{b}{q}
$$

But we are given that $\frac{a}{p}>\frac{b}{q}$. As the assumption $x y \neq 0$ violates a conditions stated in the problem, it cannot be true; as $x y \neq 0$ must be false that means that $x y=0$ is true.
(e) Note first that

$$
\begin{aligned}
a+\alpha & =\lambda p \\
b+\beta & =\lambda q
\end{aligned}
$$

Since α and β are non-negative and $a>0$ and $b>0$, the left hand sides are strictly positive. Thus it is impossible to have $\lambda=0$ and thus impossible to have $p x+q y<m$. As we know from (d) that $x y=0$, that leaves us with two possible solutions:

$$
\begin{aligned}
& x=0 \text { and } y=\frac{m}{q} \text { and } \beta=0 \\
& y=0 \text { and } x=\frac{m}{p} \text { and } \alpha=0
\end{aligned}
$$

To decide which of this is the solution (and we know from the extreme value theorem that there is one!), we have one condition at hand, namely that $\frac{a}{b}>\frac{p}{q}$. One way to settle it is to note that

$$
\lambda=\frac{a+\alpha}{p}=\frac{b+\beta}{q} \quad \text { and the latter is equivalent to } \frac{a+\alpha}{b+\beta}=\frac{p}{q} .
$$

One of α and β is zero; the other is strictly positive (we cannot have both zero, it would violate $a / b>p / q$). Check the two possible cases in turn:
Case $\alpha>\beta=0$: Then $\frac{p}{q}=\frac{a+\alpha}{b}$ which is $=\frac{a}{b}+\frac{\alpha}{b}$ which is $>\frac{a}{b}$, leading to $\frac{p}{q}>\frac{a}{b}$ which is impossible.
Having eliminated this case, it must be the other (as by the extreme value theorem we know we have a solution, and nothing else is possible!) But if we were to check that case, it would yield:
Case $\beta>\alpha=0$: Then $\frac{p}{q}=\frac{a}{b+\beta}$ which is $<\frac{a}{b}$ (we divide by something bigger). Possible indeed!
So the latter case with $\alpha=0<\beta$ solves the problem, and the solution is found at $(x, y)=\left(\frac{m}{p}, 0\right)$.

[^0]: *This would suffice, but if you want more detailed that a nonzero c rules out homogeneity - of any degree - then you can argue as follows: $u(t x, t y)=t(a x+b y+c)-t c+c=t u(x, y)+(1-t) c$; This being $=t^{d} u(x, y)$ if and only if $t^{d} u(x, y)-t u(x, y)=(1-t) c$ identically. Since $(1-t) c$ does not depend on (x, y), then neither can $\left(t^{d}-t\right) u(x, y)$, and the only way to kill the (x, y) dependence is to have $d=1$. Then $(1-t) c$ must be $=0$ for all $t>0$, and so $c=0$ is necessary.

