
University of Oslo / Department of Economics

ECON3120/4120 Mathematics 2: on the 2024-01-19 exam

� This is a postponed exam. The general principles of an ordinary exam applies � see a guideline
on a (recent, 4h) ordinary Mathematics 2 exam.

� Ordinary exam was maybe too much work, which had to be compensated in grading. This set
is less. In ordinary grading: some papers (obviously only a few, given the low total number)
did bene�t from �generous round-o�s� compared to the usual grading thresholds. In case of
appeals: up to the appeals committee's judgement.

Next pages: Problems (restated as given) and solutions and annotations (boxed) follow. Page
number = problem number.
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Problem 1 For each real constant t de�ne the matrices At and Bt and the vector vt as

At =

 0 0 0 t
0 0 t2 0
0 t3 3 0
t4 0 4 1

 and Bt =

 t 4 0 −t2

0 3t −t3 0
0 −t4 0 0

−t5 0 0 0

 and vt =

 0
t2

3
4


Note that vt is the third column of At.

(a) Calculate v′
tvt, Atvt and AtBt. (The latter should get you a diagonal matrix!)

(b) Calculate the determinants of At and of the matrix Mt = 2tAt.

(c) Show that the equation system Atx = vt always has a solution, no matter what t is.

(d) For those t such that A has an inverse: Use part (a) to �nd an expression for A−1
t .

Notes:

� The following omits the subscript. It is in the problem to emphasize that there is a depend-
ence upon t.

� For (a): This class has seen �many matrix products between vectors�. Not to make it
completely predictable, some would have to be column times row and and some have to be
row times column � which is 1×1 in which case matrix delimiters are pretty much optional:
it is common not to distinguish between such a matrix and its element.

� For (c): From the fact that v is the third column of A, this (0, 0, , 1, 0)′ is a solution no
matter t. It isn't expected to spot, and the presence of that �hint� was due to an early
draft which had a question where it could be more useful.

How to solve:

(a) v′v = 0 · 0 + t2 · t2 + 3 · 3 + 4 · 4 = t4 + 25

Av =

 0 + t · 4
0 + t2 · 3 + 0

0 + t3 · t2 + 3 · 3 + 0
0 + 0 + 4 · 3 + 1 · 4

 =

 4t
3t2

t5 + 9
16



AB =

0 + t · (−t5) 0 0 0
0 0 + t2 · (−t4) 0 0
0 t3 · 3t− 3t4 −t6 0

t4 · t− t5 4t4 − 4t4 0 0

 = −t6I

(b) Cofactor expansion along �rst column and then by �rst column again, yields |A| = −t4 ·

<top-right 3 × 3 minor> = −t4 · t3 ·
∣∣∣∣ 0 t
t2 0

∣∣∣∣ = t10. Then � because A is 4 × 4 � we get

|M| = (2t)4|A| = 16 · t14.

(c) Unique solution for t ̸= 0 so only the case t = 0 remains. But then the equation system
reduces to 0 = 0, 0 = 0, 3x3 = 3, 4x3 + x4 = 4 which has solutions, for example (0, 0, 1, 0)′.

(d) A−1 = t−6B since A is square and from (a) we have A(−t−6B) = −t−6(−t6I) = I, all t ̸= 0.
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Problem 2 Let R > 0 be constant. For each R > 0, the following functions are de�ned for all
positive x: g(x) = 1

x + lnx−R−Rx and h(x) = (lnx−Rx)e−x.

It is a fact that h′(x) = g(x)e−x.

(a) Show the following limits:

(i) lim
x→0+

x lnx = 0

(ii) lim
x→0+

g(x) = +∞ (Hint: 1
x + lnx = 1

x ·
[
1 + x · lnx

]
)

(iii) lim
x→+∞

g(x) = −∞

(b) Use part (a) to show that h has at least one stationary point p.
(You are not asked to �nd p. Hint: The fact that h′(x) = g(x)e−x means h increases where g
is positive, decreases when h is negative, and is stationary when ... ?)

(c) p depends on R. Find an expression for
dp

dR
.

(d) Take for granted that x = p is a global maximum for h. Then the maximum value V = h(p)

depends on R. Find an expression for
dV

dR
.

Note: Both b and the transpose of M appeared in both compulsory hand-ins 3 and 4; glyphs
�w� and �M� did di�er. Hand-in 3 had a multiplication exercise and hand-in 4 had determinant
and an inverse. Maybe some will recognize the determinant after having calculated it.

How to solve:

(a) (i) lim
x→0+

x lnx =

�−∞/∞�︷ ︸︸ ︷
lim

x→0+

lnx

x−1
= lim

x→0+

x−1

−x−2
= lim

x→0+
(−x) = 0.

(ii) From the hint, 1
x + lnx = 1

x

[
1 + x lnx

]
where from (i) the bracketed term → 1 + 0. So

1
x + lnx → �1/0+� = +∞, and g(x) → +∞−R− 0 = +∞.

(iii) When x → +∞, g(x) → 0−R+ lim(lnx−Rx
)
. There are many ways to show that the

latter limit is −∞, and for exam purposes one is of course enough. Possible ways, the
�rst analogous to (ii) and the next should be known from compulsory hand-ins:

� lnx − Rx = x ·
(
ln x
x − R

)
and since ln x

x → ∞/∞ here as well, that limit is =
lim1/x = 0 and we get limx · (0−R) = −∞.

� lnx−Rx is concave, has stationary point (hence global max) where 1/x = R, and
will from then on decrease steeper and steeper. Since we go to +∞, it will → −∞.

� (lnx − Rx)′ = 1
x − R → −R, so from some point x̂ on, the derivative is < −R/2

(say). For larger x then lnx−Rx = ln x̂−Rx̂+
∫ x

x̂
( 1t −R)dt < ln x̂−Rx̂−(x−x̂)R/2

which → −∞.

(b) h has stationary point when g = 0. We have that g(x∗) > 0 for some small x∗ (indeed all small
enough) and g(x∗) < 0 for some large x∗ (indeed all x∗ large enough), so by the intermediate
value theorem, g has a zero p between x∗ and x∗.

(c) Upgrade R to a variable, let γ(p,R) = 1
p +ln p−R−Rp. Then γ = 0, and

dp

dR
= −

γ′
p(p,R)

γ′
R(p,R)

=

−p−2 + p−1 −R

1 + p
. (You can prettify if you like.)

(d) By the envelope theorem, V ′(R) =
∂

∂R

[
(lnx−Rx)e−x

]∣∣∣
x=p

= −pe−p.
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Problem 3
(a) Use the substitution u = − ln z to show that∫

ln z dz = z · (ln z − 1) + C

If you are unable to do so using that substitution, you can get up to �E� worth of score for showing
the formula by any method of your choice.

(b) Find the general solution of the di�erential equation

ẋ = x2 · ln t

How to solve:

(a) The substitution yields du = −z−1dz, where z = e−u and dz = −e−u du. The integral
transforms to

∫
(−u)(−e−u)du. By parts, with v′ = e−u and v = −e−u, we have uv−

∫
du
du

(
−

e−u
)
du = −ue−u −

∫
(−e−u)du = −ue−u − e−u + C = z ln z − z + C as should.

(The alternative method for �E�: Di�erentiate right-hand side.)

(b) Separable di�erential equation with constant solution for x = 0. For nonzero x, separate and
integrate: ∫

x−2dx =

∫
(ln t)dt =⇒ −1

x
= t(ln t− 1) + C (from (a))

and so the solution is x =
−1

C + t(ln t− 1)
or x = 0.

Note: You cannot obtain x = 0 as a special case of x =
−1

C + t(ln t− 1)
, with any real constant

C. That was deliberate.
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Problem 4 Let f(x, y) = lnx+ 2 ln y, and consider the problems

max /min f(x, y) subject to x2 + y2 = 3 (L)

max f(x, y) subject to x2 + y2 ≤ 3 (K)

Note that there are two �(L)� problems, one max and one min, but only a maximization problem under
inequality constraint.

(a) Consider the Lagrange conditions associated to problems (L).
Show that there is precisely one point (x̃, ỹ) that satis�es these conditions, and
�nd this point.
(Hint: Eliminate 1/λ to �nd 1

λ = 2x2 = y2.)

(b) The constraint x2 + y2 = 3 forms a circle (with radius
√
3), and point (x̃, ỹ) lies on that circle.

The following argument is nevertheless �awed; �nd the �aw in the argument:

� The circle formed by the constraint is a closed and bounded and nonempty set.

The function f is continuous. Hence the extreme value theorem grants the existence of a

max and a min, and both will have to be at the only possible point (x̃, ỹ). �

(c) Does point (x̃, ỹ) satisfy the Kuhn�Tucker conditions associated with problem (K)?

(d) One of the following is true, and you shall prove the true one:

� Prove that (x̃, ỹ) solves problem (K).

OR:

� Prove that (x̃, ỹ) solves the minimization (L).

How to solve: We will need the Lagrangian f(x, y)− λ(x2 + y2 − 3) and its partial derivatives
L′
x(x, y) =

1
x − 2λx and L′

y(x, y) =
2
y − 2λy.

(a) Conditions are then 1
x = 2λx, 2

y = 2λy and x2 + y2 = 3. As per the hint, 1
λ = 2x2 and

2
λ = 2y2 and hence 2y2 = 2

λ = 2 · 2x2. Inserting 2x2 for y2 we get 3 = x2 + 2x2, so x = 1.

(Only the positive square root, as ln is not de�ned at −1.) Then y2 = 2 so y =
√
2 (again

only the positive, due to the ln).

Conclusion: Lagrange point ⇔ (x, y) = (x̃, ỹ) = (1,
√
2).

(b) The �aw is: f isn't de�ned on the entire circle. Thus not continuous on the circle.

(f is a �continuous� function, but that means �continuous where it is de�ned�.)

(c) Constraint is active, so Kuhn�Tucker holds if and only if λ ≥ 0. That holds: λ = (2x2)−1 > 0.

(d) Because the point satis�es the Kuhn�Tucker conditions and L is concave (being a sum of
concave functions, because λ ≥ 0), the point solves the Kuhn�Tucker maximization problem.

Note on (d) (cf. (c)): Point (x̃, ỹ) does not solve the minimization part of (L), so certainly any
attempt of proving so would be futile. Even without considering concavity, there should be ample
hints that one should not even attempt, especially if one spots the point of part (c): as we move
along the circle to the boundary of the domain of f , the log terms will make f → −∞, and
so no minimum can exist. Or if one was able to locate (x̃, ỹ) one could evaluate f(1,

√
2) =

ln 1 + 2 ln 21/2 = ln 2 and then pick some other point on the circle (arbitrarily, though in the �rst
orthant so that f is de�ned); say, f(

√
2, 1) = 1

2 ln 2 + 2 ln 1 = 1
2 ln 2 which is < ln 2, disproving

minimum immediately.
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