

Quasoconcave

For whatever level
we fill up with water: Put a layer of flocking blu int on tap. That should be a convex set

* A function that is both concave and convex, is linear (well, affine: it could have a constant term). Therefore, we call a function quasilinear if it is both quasiconcave and quasiconvex. Example: any strictly monotone transformation of a linear $\mathbf{a}^{\mathrm{T}} \mathbf{x}$.
* The 2019 version of Math 3 does not stress strict quasiconcavity/quasiconvexity. Though, it is possiblefor a function to be both. (Example: Any strictly monotone of a single variable!)
* The above quasiconcave is a transformation of a concave, but there are quasiconcaves that cannot be written as such a transformation.

Concare

What set is convex?

Graph nane below: $f\left(\lambda \bar{x}^{(1)}+(1-\lambda) \bar{x}^{(0)}\right)$ continnous? f^{7} ?
"Essentially so", on inderion - but you comnot just final a stadionsing pount In \mathbb{R}^{2}, single vavialole:
There is someng g such that

$$
f(b)-f(a)=\int_{a}^{b} g(x) d x \text { (all a,b) }
$$

and: g noniticreasing

Concave
Quasiconcave
Property preserved?

Under positive scaling?
αf concave if
$\alpha \geqslant 0, f$ concave

Under sums?

Under composition

$$
h(x)=g(f(\bar{x})) \text { ? }
$$

Yes, $f+g$ concave of \quad No. Counterex: $\sqrt{|x-2|}+\sqrt{|x+2|}$. f and g both concave.
Need extra assumption: If: Yes: If $f_{i} g$ both quasuconcave $f_{1} g$ both concave \& g nondocreasing then h is quasiconcare. then h is concave

Under min? Yes. If fig concave, than $h(\bar{x})=\min f(\bar{x}), f(\bar{x})\}$ in concave.

Yes. If f ig both quasiconcare, then h quasiconoave.
[No " max" - that is for cobrexily Iquasiconrexity I]
C^{1} condition: The fust-orde approximation for change from
\vec{x}^{*} to \vec{x}.

$$
\nabla f(x+)(x-x)
$$

\geqslant true change $f(\vec{x})-f\left(\vec{x}^{+}\right)$
$\geqslant 0$ whenever $f(\vec{x})>f(\vec{x} *)$ eff f concave iff f quasuconcare
C^{2} conc.
Hessian negative semidet. Bo-derel Hessian Condition.

Nowhinear Programmung properties
$\max \quad f(\vec{x}) \quad$ s.t $\quad g_{j}(\vec{x}) \leqslant b_{j} \quad h\left(x_{k j}\right)=c_{k}$

Concare programe
f concare, all gis convex: all h_{k} linear

Quasiconcare progran
f quasiconcare, all is quasoconvex - all h_{j} quasitinem

Sufticiancy Suppose an admissible \vec{x}^{*} satisties the $K-T$ conal's concare: \vec{x}^{*} solves

Quasiconcare: If $\nabla f\left(\vec{x}^{*}\right) \neq 0^{T}$ then x^{*} solues

K-T w/o differenkability assumphons,.
concave case:

$$
\text { Vake }=v(\vec{b}, \overrightarrow{0}) \frac{\text { concare e. }}{(\vec{r} \rightarrow)} \text {. }
$$

\Rightarrow has a supargradient $(\vec{\lambda}, \vec{\mu})$ at each point (\vec{b}, \vec{C}); tor any such:
an optronal \vec{x}^{*} maximizes
the Lagnangian

