Convex sets ono: we do no\% speak e about "concave" sets)
Recall: Convex combination of \vec{u} and \vec{v}

$$
=\lambda \vec{n}+(1-\lambda) \vec{b} \text { whee } \lambda \in[0,1]
$$

- Convex combination of $\vec{v}(i), \ldots, \vec{v}(k)$

$$
=\lambda_{1} \vec{v}^{\left(c_{1}\right)}+\ldots+\lambda_{k} \vec{v}(k) \text {, each } \lambda_{i} \geqslant 0, \sum_{i=1}^{k} \lambda_{i}=1 \text {. }
$$

Def Let s be a subset of some vector space, say \mathbb{R}^{n} (so that linicomb's ave well. Refuel!)
S is convex if, whenever u e S anal $v e s$, we also hove $\lambda \vec{u}+(1-\lambda) \vec{v} \in S$, any $\lambda \in(0,1)$.
Also: strictly convex if $\lambda \vec{u}+(1-\lambda) \vec{r}$ is in addition never a boundary. point unless $\vec{u}=\vec{v}$ and \vec{v} on of $\lambda \in(0,1)$ boundary.
Ex: . \mathbb{R}^{n} itself!
And $\varnothing \rho$ and any singleton - but no other finite set!

- In \mathbb{R}^{2} : the intervals! Indeed, "convex set" is a generalization of "interval". And; bode uses $[u, v]$
for $\left\{\vec{w}\right.$; conn, comb of $\left.\overrightarrow{u_{p}} \vec{v}\right\}$.
- Given $\vec{a}, r:\{\vec{x} ;\|\vec{x}-\vec{a}\|<r\}$. (or "s")" Not tuvial to prove! (A bul is also an "interval" -esque set.)
- The set of solutions of $\vec{A} \vec{x}=\vec{b}$.

Proof: If \vec{u}, \vec{v} are sol'us, then $\vec{A}(\lambda \vec{u}+a-\lambda) \vec{v})=\lambda \vec{b}+(1-\lambda) \vec{b}$ is the e fore a solution.

- Exercises: The set of $\vec{X} ; \vec{A} \vec{x}$ is coo-drnate-vise $\leqslant \vec{b}$
- Note : The solutions of $\vec{A} \vec{R}=\vec{B}$: just hike lin. comb's, lin. indepldep., the concept worlas may begone n-vectors!

Intersecting convex sets:
Claim: The intersection $S=S$ no S_{2} of two convex sets S_{1} and S_{2}, is a convex set.
Proof: Suppose $\vec{u} \in S, \vec{v} \in S$ and $\lambda \in(0, D$.
Then $\lambda \vec{u}+(1-\lambda) \vec{r}$ is: $\left\{\begin{array}{l}S_{1}, \begin{array}{l}\text { as both points are } \in S_{1} \\ \\ s i n\end{array} \text { amen }\end{array}\right.$ and thees $S_{1} \cap S_{2}$.
The book calls this proof "One of the world's scmplest". If you don't think it is sample, it is probably a language hurdle: draur a Ven dragrain!

Exercise: Let $\left\{S_{j}\right\}_{j^{\prime} \in J}$ be an arbitrary collection of convex sets. Show r that $\bigcap_{j \in J} S_{j}$, is convex.

Terminology: the convex bull of a set T is the intersection of all convex supervets. Fact: it is the smallest convex supestet of T.

Ex:: $T=$ this curve in $\mathbb{R}^{2}: 8$
Convex hull : drop - 8 hoped,

Note: the union of converses need not be convex. Erg.

Why convex sets?
Separating hyperplanes of the $2^{\text {nd }}$ theorem of welfare economics

Conrad preferences \leftrightarrow the set of \vec{x} sit $\vec{x} \underset{\substack{\text { when } \\ \text { pref }}}{\int_{x}} \vec{x}^{x}$ convex, each \vec{x}^{*}.
Edgeworth box, 2 goods, 2 agents

Fact: Given two disjoint convex sets A, B, A open. Then there is a $\vec{P} \quad \begin{aligned} & \text { but } e \mathbb{R}^{n}{ }^{n} \\ & \text { wag made }\end{aligned}$ such that

$$
\vec{p}^{\top} \vec{u}<\vec{p}^{\top} \vec{v} \text {, all } \vec{u} \in A, \vec{v} \in B
$$

(Dashed line: $\vec{p}^{T} \vec{x}=m$, budget...)
(The pricing functional \vec{P} is not monique. If boundaries are "smooth, att tangency", \vec{p} is unitive up to sealing.)

Convex preferences \longleftrightarrow
quasuconcare utility functions
Fist: the more restrictive notion of convex/concare functions.

Convex I concave functions
Note: "functions" here output numbers; like Math 2.
We shall give two cefins for convex functions. First, a geometric.
Terminology: Epigraph: set of points on ow alone the graph.

$$
e_{p i}(f) \text { : the } \operatorname{set}\{(\vec{x}, \vec{z}) ; \quad z \geq f(\vec{x})\} \text {. }
$$

Ex: $f(x)=\max \{0, x\}$ "fill up with water"
Note: one move dimension than \vec{x}.
Definition (I) : convex function.
Let f be defined on some convex $S \subseteq \frac{\mathbb{R}^{n}}{\text { or: some rector }}$
f is convex if epi (f) is a courex set. and strictly convex if ep. (ℓ) is a strictly,
Note: The requirement that S be convex. follows automatically if we omit it.
Ex: $|x|$ is convex. Even $\|\vec{x}\|$ (not completely oberons!)
Definition (II), convex function (defined on convex S): f is convex if, whenever $\vec{u} \in S, \vec{v} \in S, \lambda \in(0,1)$

$$
f(\lambda \vec{u}+(1-\lambda) \vec{v}) \leqslant \lambda f(\vec{u})+(1-\lambda) f(\vec{v}) \text {. }
$$

f is strictly convex if holds with $\&$ except When $\vec{m}=\vec{v}$.

Deft. II:

Pickle two points on the graph. The connecting line segment is never below the graph.
("Always above" for shat).
Equivalent def's!

Concave functions:
Def: f is concare if $-f$ is convex.
f is strictly concave if $-f$ is strictly convex.
We can then formulate defins analogous to the above tue. Non-strict versions:

I: the convexity of the hypograph, ie. the set of points on on below the graph
II: Whenever $\vec{u} \in S, \vec{v} \in S$ and $\lambda \in(0,1)$:

$$
f(\lambda \vec{u}+(1-\lambda) \vec{v}) \geqslant \lambda f(\vec{u})+(1 \cdot \lambda) f(\vec{u})
$$

Note: For each pair $\vec{u}_{c} \vec{r}$ of points - assume $\vec{u} \neq \vec{v}$ consider $h(\lambda)=f(\lambda \rightarrow+(-\lambda) \theta)-\lambda(f(\overrightarrow{i n})-(1-\lambda) f(\vec{\theta})$
Sumilar "Convenient:" sungle variable $\lambda \in(0,1)$. fornvex II' $^{2}:$ f concave \Leftrightarrow for each pair- $\cdot \vec{w} \neq$ in S \&for we have $h \geqslant 0$ on the interval (0,1) "strict" (and... n concave in λ !)

We could consider convex comb's of several vector:
f concave of
$f\left(\right.$ convex comb. of $\left.\vec{v}^{(w)}\right) \geqslant$
convex comb, of the $f\left(\vec{v}^{\omega}\right)$.
and even Jensen's inequality: I concave
$" \Leftrightarrow f(\vec{Y}) \geqslant E f(\vec{Y})$ "all " random
but then we would have to add a reservation like "as long as convergent or

$$
=+\infty \text { or }=-\infty^{4} \ldots
$$

Jensen's inequality ties concavity to risk aversion: $f(E Y) \geqslant E F(Y)$ says "prefer (weakly) the expectation to the riv,".

But, let's stick to def's I and II.

Proving concavity/convexity from defis could be demanching.

Ex: $f(x)=|x|$.

$$
h(\lambda)=|\lambda n+(1 \cdot \lambda) v|-\lambda|u|-(1-\lambda)|v| .
$$

No restriction to assume $u>V$
We have:

$$
h^{\prime}(\lambda)=(n-v) \operatorname{sogn}(\underbrace{\lambda n+(1-\lambda) v)-(|n|-|v|) ~}
$$

$$
\text { smallest at } \lambda=0^{+} \text {, since } v<a
$$

if chances sign:

$$
\text { from - to } t
$$

So h^{\prime} nondecreasing; with a possible upwards j imp.
Since $h\left(0^{t}\right)=h\left(,^{-}\right)=0$, we must have the decreasing part of h first", so h so,

This idea worlds also for "Math 2 convex" functions.
Suppose $g^{\prime \prime} \geqslant 0$. Let $v<u$.
Then $h(\lambda)=g(\lambda u+(1-\lambda)-)-\lambda g(u)-(1-\lambda) g(\nu)$

$$
\begin{array}{ll}
h^{\prime}(\lambda)=(u-r) g^{\prime}(&) \quad-g(r)+g(r) \\
h^{\prime \prime}(\lambda)=(u-r)^{\prime} g^{\prime \prime}(, &)
\end{array}
$$

So h^{\prime} inondecreasing and h-stents and ends at 0;
1 must have the decreasing part fist, So $h \leqslant 0$ and g convex. (def II).

Properties...? Characterization?

* Tempting to start generally, then impose conditions... "if $f \in C$ " "a "if " $f \in c^{2}$."

CShouldu't I then rather hove started with quasiconvexes/quasiconcares?)

* Alternative: c^{2} first, then C^{\prime}, thun...
* Will do: First a few general properties that do not use derivatives. (but could, of applicable)
Then: characterization for c^{2} functions
Then: charactenigation for c^{\prime} functions
Then: characterization if not even C'
If you prefer a different, order - reshuffle the notes!

Three genenal facts:

1) If f and g are conrex Con same domacn)
$\begin{cases}\{ & \text { concare } \\ \{\min \{f, g\} & \text { concare. }\end{cases}$
(Indeed: works for more than two fumetous!)
2) If f, g conves and $\widehat{\alpha>0, \beta>0, \text { const }}$ concare then $\alpha f+\beta g$ convex
and sturctly coneex if f or g is dexto! [Q : difterent domanis?]
3) Consucher $F(\vec{x})=h(f(\vec{x}))$
where f conrex, takes values in $T \subseteq \mathbb{R}$ h conrex and nondecreasing on T.
Then I is conrex T Concave version: if she: tih conoare then F concave.

Betore prowing: how do 1) - 3) relate to Math 2?

1) the Math Z case
well, in Math 2 we would need $\max \{f, g\} c^{2}$ as well, so then it would be a nonneg $2^{\text {nd }}$ dens (concave: min $\{\ldots\}$.... nonpos....)
2) the Math 2 care At least for functions of a single variable,

$$
\alpha f^{\prime \prime}+\beta g^{\prime \prime} \ldots \text { ok! }
$$

3) the Math 2 case:

Easy for functions of a single vameuble

$$
\begin{aligned}
& \bar{F}^{\prime}=h^{\prime}(f(x)) f^{\prime}(x) \\
& F^{\prime \prime}(x)=h^{\prime \prime}(f(x)) \underbrace{\left(f^{\prime}(x)\right)^{2}}_{\geqslant 0}+\underbrace{h^{\prime}(f(x))}_{\text {assumed } \geqslant 0} f^{\prime \prime}(x)
\end{aligned}
$$

But generally?
Proof 1): intersect epigraphs!
Ex 1): $|x|=\max \left\{x_{1}-x\right\}$ is convex!
Proof 2): Defin II, apply uneq. For f ant then g.
Strict case: one ines strict!
$\begin{aligned}\text { Proof 3)(Convox }): f(\lambda \vec{u}+(1-\lambda) \vec{v}) & \leqslant \lambda \hat{f(\vec{u})}+(1-\lambda) \hat{f(\vec{v})} \\ h(& \leqslant h(\end{aligned}$
since h nondecr. RHES

$$
\leq \lambda h(s)+(1-\lambda) h(t)
$$

since h convex
Insert and we are done!
\#3) is "dangerors":
You cannot "just turn anenything upsede denen" to suritch between concaves and canveras.
$E x: \quad e^{\|\vec{x}\|}$ is comex..
$U \vec{x} \|$ is convex, and e^{t} is convex \& Moveary
Non-ex:
$-e^{-\|\vec{x}\|}$ is not concane.

- $\|\vec{x}\|$ is comcare, $-e^{t}$ is concave -but not nondecreasing!

$$
\left(-e^{-\|\vec{o}\|}=-1 \text { and as }\|\vec{a}\| \rightarrow+\infty\right. \text {, }
$$ $-e^{-\|\vec{x}\|} \rightarrow 0$, so ct cammot possuloly be concare.

C^{2} functions), defined on convex $S \subseteq \mathbb{R}^{n}$. Let $\vec{H}=\vec{H}(x)$ be the Hessian matrix We have the implications

H posidef on S except ...neg. possibly at isolated points
V note: 11
f strictly convex \quad f strictly concave

Note: • the "exapt possibly": x^{4} is strictly convex, yet Hessian hit so.
Compossible for quadratic functions, Hessian matiox is constant)
the first " "I" is not a 仝.
det \vec{H} could hit zero "more ot ten than that" yet not destroying stwet [concariby/courex.d]]

Convex:
Tangent never above the graph

- and touches only at that single point, for strictly convex functions. $1^{\text {st }}$ order approx: undoestimates

Concave:
Tangent haver below graph.

- ... strict...
$1^{\text {st }}$ order approx: overestimates
around $x^{*}: \frac{f(x)}{f}$.

Concave/convex functions are" not that far from being pueceurse differutvable".

For (C'functions) - drop the c^{2} assumption
A function $f \in C^{\prime}(S), \quad S$ convex, $S \subseteq \mathbb{R}^{n}$, is convex of and only if concave

$$
\begin{aligned}
f(\vec{x})- & f\left(\vec{x}^{*}\right) \\
& \geqslant \nabla f\left(\vec{x}^{*}\right) \quad\left(\vec{x}-x^{*}\right) \\
& \text { all } \vec{x} \neq \vec{x}^{*}
\end{aligned}
$$

(and strictly so cf the urey is strict, all $\underset{x}{*} \neq x^{*}$).

Note: adding linear terms will not change concanty/convexity, so we can alternatively write:

If convex of the following holds:
For each \vec{x}^{*} : 5 , the function g :

$$
g(\vec{x})=f(\vec{x})-f\left(\vec{x}^{*}\right)-\nabla f\left(\vec{x}^{*}\right)\left(x-x^{*}\right)
$$

- Strictly. if the min is always strict

For concave /strictly concave: "max"

Drop the C^{\prime} assumption.
Fact: If the domain is open, a convex (concave) function is contimnows.
The only discontinuities can be on the boundary, (but they cam be petty bad:

Let $s=\left\{(x, y) ; x^{2}+y^{2} \leq 1\right\}$.

$$
f=\left\{\begin{array}{l}
\text { nonnegative strictly concave } \\
\text { anything } \leq 0, \text { each boundary } \\
\text { point }
\end{array}\right.
$$

Yes, since S is a strictly convex set, we can draw $f(x, y)$ icicle random $\leqslant 0$ at bowindan posits!

So: Assume Continuity. Concave / convex functions will be continuous on ETON 4N40

But: can we say something sensible about this situakon?

Recall from the C'case:

Terminology: Given f on open convex set S $F \cdot x \vec{x}^{*} \in S$. Consider ate functions z : $z-f\left(\vec{x}^{*}\right)=\vec{p} \cdot\left(\vec{x}-\vec{x}^{k}\right) \quad$ in $S \times \mathbb{R}$ ${ }^{*} z(\vec{k})$, afture

Def:

- If $z \leqslant f(\vec{x})$, ale $\vec{x} \in S$ we Call \vec{p} a subgradient of f at \vec{x}^{*}
\therefore The set of all such possible \vec{p} st $z \leqslant f(\vec{x})$ is called the subdifterential of f at \vec{x}^{*} Analogously: If $z \geq f(\vec{x}) \forall \vec{x} \in s$: supergradient and the possible $\vec{\theta}$'s: superdifferential
Move that this deft' is pointwise", each \bar{K}
Facts: if $\overrightarrow{\nabla f}\left(x^{*}\right)$ exists, then it is the only possible sub-I supergradient at \vec{x}^{*}
- f convex \Leftrightarrow has a sulogradient at each $x_{E S}^{*}$
- concare \Leftrightarrow has a super....
(Here we still assume f defined on open convex S.

What did this mean o...?
\rightarrow trig to form subgradionts for am arbitrary continuous f.
If f is not convex, you will fail somewhere...
because z was
required to be st everywhere, (each \vec{x}^{*})
(This formulation of subgradizuts/subdiff.) super-...
is "tailored to the narration"... Where the point is to grasp the geometric behaviour.)

So we have generalized the derivative.
Now generalizing stationary points...?
Note: a local min for a convex, is global
a local max concave
Fact: Let f be defined on an essen convex. If $\overrightarrow{0}$ is a subgraclient at x^{*}, them x^{*} is global min

If $\overrightarrow{0}$ is super.......
global max
"Proof": Put a hovi"yntal ingperplane atop the graph.
If that is pesside without cutting through the graph elsewhere - then ...
Also note:
The set of global mun of a convex f
is Convex.
©A "flat plateau atop a comose" waist form a convex subset of S. -this is a special case of quasiconcavity)

So... st. pts...?
c functions: set $\nabla f=\overrightarrow{0}$
Convex/concave... set ... what?
Sorry. Easily becomes inconvenient by hand (but not hopeless to unplenent numencally,
Simple example: $|x|+|y-3|$
$\nabla f=($ sign $x, \operatorname{sign}(y-3))$ whenever wek-defred
At $x=0, \frac{\partial t}{\partial x}$ crosses 0 . At $y=3, \frac{\partial f}{\partial y}$ crosses 0
So B does the subgrachent job at $(0,3)$.

One more chamactenzation:
Suppose f continuous on convex S.
If for every pair \vec{u}, \vec{r} in $S, \vec{b} \neq \vec{r}$ we have

$$
\begin{aligned}
f\left(\frac{1}{2}(\vec{n}+\vec{r})\right) & \leq \frac{1}{2}(f(\vec{n})+f(\vec{n})) \\
(\operatorname{eesp} & <\operatorname{resp} \geq \operatorname{resp}>)
\end{aligned}
$$

then f is convex resp strictly convex resp concave resp stuctly concave

So if we know we have conturunitg 1 them the unweighted on enrage $\lambda=\frac{1}{2}$ suffices!

Q: Is there anything "lost" by assmmany "S open and convex" rather than "S convex, f continuous"?

A: Well... kincla...
1 vertical tangents,

Open $S=\begin{aligned} & \text { tangents may } \rightarrow \text { vertical } \\ & \text { slopes may } \rightarrow+\infty \text { or }-\infty\end{aligned}$
boundary: could be verheal $(\pm \infty$.
Do not bother.

Convex/concare functions of a single vanaible are integrals of their "denratives".
Consider the follourng property,
Fix open interval $S=(a, b)$. There is (1) a g such that for all α, β in S :

$$
\int_{\alpha}^{3} g(x) d x=f(\beta)-f(\alpha)
$$

Facts:

$$
\begin{aligned}
& \bar{f} \text { convert on }(a, b) \Leftrightarrow \text { holds with some } \\
& \text { nondecreasing } g \text {, } \\
& \text { strictly increasing } \\
& \text { nowinceresung }
\end{aligned}
$$

Cg could have infinitely many discontinustres,

- for example, it conte jump at even rabonal number!)
.. and real": f convex \Leftrightarrow for any pair \vec{u}, \vec{r} the function $h(\lambda)=f(\lambda \vec{u}+(\cdots \lambda) \vec{n})-\lambda f(\vec{n})-(1-\lambda) f(\vec{r})$ is convex on $\lambda \in[0,1]$

