Quasiconcare / quasiconvex functous

* Fill up with water;
the water is a convex aet.
* Equivalent, but a bit more involved: For any laval l :
- Till up to level e
- The waken is a comer et

For any level e :

- till up to level e
- The watt surface (bind's view!) is a convex set.
Def I: f quasicounex if:
These sets are coures: $\left\{\vec{x} \in \mathbb{R}^{n} ; f(\vec{x}) \leqslant z\right\}$ for ever z !

The respective definition requires the connecting line to be above the graph whence ven we pick two points that are:
convex above (orion)
the graph
quasoconvex above (or on) the graph AND at same (vertical) level.

In particular, every convex function is also quasiconvex.

This definition is convenient to show that the max of two quasiconvex functions is quasiconrex [but: the em need not be!]

But let us turn to quasuconcares, as you probably see more of those:
Def: f quasiconcure if $-f$ is quesicon-ex CFollows : min \{two quaticomames is quatrencent

Probably this is easier to relate to mucroecomonis:
Def II: A function t defined on a convex set S is quasiconcare if for any two $\vec{u} \neq \vec{v}$ ins, any $\lambda \in(0,1)$ we have

$$
f\left(\lambda \vec{u}+\left(1-\lambda_{0}\right) \vec{v}\right) \geqslant \min \{f(\ddot{u}), f(\vec{\infty})\}
$$

wbility interpret: a werghbed arg. is better than the worst. (omgreal)
Or: moving towards a better vector.
improves from step one. COo un owe skep back in order to get two steps for wand")
Strict: holes with " $>$ ".
(Note $\vec{u} \neq \vec{v}$ assumed, and λ of $\left.\left\{0_{1} 1\right\} 1\right)$

Quasuconcarrily is preserved under uncreascing transformarions.

Strict quasiconcavely: under strictly mer, transti is

$$
\text { Colon-Donglas g }(x, y)
$$

cencare

Quaricomeare.
Same level curves, differant levels.

Remember: concare

$$
\begin{aligned}
f= & h(g(g)) \\
& f
\end{aligned}
$$

char
is concara

$$
\begin{aligned}
& f(\text { quaswconeam } \\
& f(g(\vec{x})) \\
& \text { increasing }(\Rightarrow \text { inesur } \\
& \text { concoss: })
\end{aligned}
$$

is quasiconodur.

Def: Quasikhear: both quasciconeare and quasiconvex.

Ex: Ang monotonows functeon of a sungle ramiable. (Could hare immps!)

Example: Defur f for all $x \geq y, y \geq 0$ as follours:

Tom $(x, g) \in \mathbb{E}_{+1}^{2}$ consither the lint fom (x, g) ho $(1,1)$. Let $f\left(x_{i y}\right)=1$ tslope of thas lumer
Thow $1=$ the y cocon 0 t whan tha

$$
f(x+s)=\frac{x+0}{x+1}
$$

Quasilinear!
Uper Aut sex: fung 2 : \Leftrightarrow
axigla half-phare above bue $\cap \mathbb{R}_{t}^{2}$ courex \cap conver.
Lower: haff-plame below lime $\cap \mathbb{R}^{2}$
Warming: This f is not a. tramstermation of a concare or a conrex. ${ }^{\nabla}$
A concame/convex Cumóe produce such lavel ameres!

Quasiconcare functions need not be "nice" at all. Ex: Let $g(\vec{x})$ be Cobb-Douglas, and let

Nevertheless, some characterizations for c^{2} / c^{\prime} functions one inbenestray.

Preliminary:

Constrain f to the doted lune. The maximum subject to that line, is the point!

In fact: if for any such tangent [mince the cusp we have max (a) tangency point. then f is quariconcane!
C^{2} characterization for strict quasuconcanity. The tangent hyperplane is now orthogonal to ∇f. Let $\vec{H}=\vec{H}(\vec{s})$ be the Hessian.

Fact: if for every \vec{x}^{*} we hand
$\vec{H}\left(\vec{x}^{*}\right)$ negative sub subject to the constraint $p^{T} z=0$ where $\vec{P}^{+}=\nabla f\left(x^{*}\right)$,
then f is strictly quassconcase.
Do we have a " $\Leftrightarrow "$? No. H and Pf contd lit zero.
\Rightarrow Sufficient: $(-1)^{r} b_{r}>0, r=2, \ldots ., n$
where $\quad b_{n}=\left(\begin{array}{cc}0 & D f\left(x^{*}\right) \\ D f\left(x^{*}\right)^{\top} & b\left(x^{*}\right)\end{array}\right)$
and b_{r} is the $(+1) \times(r+1)$ leaching principe rt minor.

For $n=2:\left|\begin{array}{lll}0 & f_{x}^{\prime} & f_{y}^{\prime} \\ f_{x}^{\prime} & f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\ f_{y}^{\prime} & f_{y x}^{\prime \prime} & f_{y y}^{\prime \prime}\end{array}\right| \geq 0$

Example: $f(x, y)=x y$ on:

(b) Open secomalquadremt: On $f(x a y) ; x>0 x y$.

$$
\nabla f\left(x_{2}, y\right)=(y, x) \quad\left|\begin{array}{lll}
0 & y & x \\
y & 0 & 1 \\
x & 1 & 0
\end{array}\right|=2 x y
$$

(a) Strictly quasicomonte when $2 x y$ bo.
(b) Not but same for $=f$, yules ${\underset{\sim}{20}}_{-2 x y}^{y}$ ye

So if is strictly quasicomver on the second 4urctrombt
Dole:
The example was an illustration of the cnitanon. Arguably fastens

$$
f \geqslant b \Leftrightarrow y \geqslant h / x \Leftrightarrow t
$$

$$
\leqslant 4: \frac{1}{1!}
$$

Example: Letaiblol>0. $f\left(x_{0}\right)=x^{a} y^{b}$ on $\mathbb{R}^{2} \cdot \quad$ Qarasioname
sinn uppon luel bets
$y \geq$ comshan x^{24} are convex.
convex fander
But to illustrate the determinant
Onkenon: $f_{x}^{\prime}=\frac{a}{x} f ; \quad f_{y}^{\prime}=\frac{b}{y} f$

$$
\begin{aligned}
& f_{x x}^{\prime \prime}=\frac{a(a-1)}{x^{2}} f ; f_{x g}^{\prime \prime}=\frac{a b}{x y} f ; \quad f_{y y}^{\prime \prime}=\frac{b(a-1)}{y^{2}} f \\
& \left.\left\lvert\, \begin{array}{ccc}
0 & \frac{a}{x} & \frac{b}{y} \\
a / x & \frac{a(a-2)}{x^{2}} & \frac{a b}{x y} \\
a / y & \frac{a b}{x y} & \frac{b(b-1)}{y^{2}}
\end{array}\right.\right) f=\frac{a b f^{2}}{x y}\left|\begin{array}{ccc}
0 & 1 & 1 \\
a / x & \frac{a-1}{x} & \frac{a}{x} \\
4 / y & \frac{b}{y} & \frac{b-1}{y}
\end{array}\right| \\
& =\left(\frac{a b}{x y}\right)^{2} f^{3}\left|\begin{array}{ccc}
0 & 1 & 1 \\
1 & \left(1-\frac{1}{a}\right) & 1 \\
1 & 1 & \left(1-\frac{1}{b}\right)
\end{array}\right|=\left(\frac{a b}{x y}\right)^{2} f^{3} \cdot\left(1-\left(1-\frac{1}{b}\right)+1-\left(1-\frac{1}{a}\right)\right) \\
& =\frac{a b}{(x y)^{2}} f^{3} \cdot(a+b)
\end{aligned}
$$

3. The elasticity of substitution defined in (2) can be expressed in terms of the

The matins derivatives of the function F :

$$
\left[\begin{array}{cc}
0 & \nabla F \\
(\nabla F)^{T} & \text { Hesse }[F]
\end{array}\right]
$$

(and its cletemmunt) ane collet the

Bordered Hessian of F.
Ore application: Let $n=2$. Then

$$
\begin{gathered}
\left|\begin{array}{cc}
0 & F_{x}^{\prime} F_{y}^{\prime} \\
E_{x}^{\prime} & E_{y} \\
F_{y}
\end{array}\right|=-\left(\left(F_{x}^{\prime}\right)^{2} F_{y y}^{\prime \prime}-2 F_{x}^{\prime} F_{y}^{\prime} F_{x y}^{u}\right. \\
\left.+\left(F_{y}^{\prime}\right)^{2} F_{x x}^{\prime \prime}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \sigma_{y x}=\frac{-F_{1}^{\prime} F_{2}^{\prime}\left(x F_{1}^{\prime}+y F_{2}^{\prime}\right)}{x y\left[\left(F_{F_{2}^{\prime}}^{\prime}\right)_{11}^{\prime}-2 F_{1}^{\prime} F_{2}^{\prime} F_{12}^{\prime}+\left(F_{1}^{\prime}\right)^{2} F_{212}^{\prime \prime}\right.}, \\
& \text { formula to derive he result in Example 2. } \\
& \text { (bardewel Hessumm }
\end{aligned}
$$

When ubiety / poolaration is increasing a quasciconeave, Hall terms hare r ane $\geqslant 0$,

Now the elasin.on of substitadon:

C' chavartenization

* f quasuconcare
\leftrightarrow for any two \vec{x}, \vec{x}^{+}with $f(x) \geqslant f\left(x^{*}\right)$ we have $\nabla f\left(x^{*}\right)\left(\vec{x}-\vec{x}^{*}\right) \geq 0$
* If furthermore $\nabla f\left(\vec{x}^{*}\right)\left(\vec{x}-\vec{x}^{*}\right)>0$ except when $\vec{x}=\vec{x}^{*}$, then f is strictly quasiconcare.
[Note: no " $\Leftrightarrow "$; conkerex: $\quad \begin{aligned} & \left.f(x)=x^{3}\right] \\ & (a \in 0) .\end{aligned}$
interpretation: Recall that

$$
\nabla f\left(\vec{x}^{*}\right) \frac{\vec{x}-\vec{x}^{*}}{\left\|\vec{x}-\vec{x}^{*}\right\|} \text { is the }
$$

directional derivative in the direction towards the "better" point \vec{x}.
First step towards something better, improver: (This los not soy that f increases monotiononshy when moving from $\vec{x} *$ to \vec{x} :

Quasuconcare Iquasuconvex homogeneous positive functions

Fact: Let f be defined on a convex come k. [recall: a cone satisfies that $\vec{x} \vec{e}_{k} k$ $\epsilon \vec{x} G k y \in=0]$
Suppose that $f(\vec{x})>0$ if $\overrightarrow{0} \neq \vec{x} \in K_{1}$ $[$ it will follow that $f(\overrightarrow{0})=0$ if t defined there]
and that f is (positive-) homogeneous of degree $q>0: \quad f(t \vec{x})=t^{q} f(\vec{x})$, all alto.

Then:

* If f is quasiouncare and $q \in(0,1]$ then f is concave.
* If f is quasiconrex and $q \geqslant 1$ then f is convex.

Exercise: Suppose we have proven the case $q=1$. Why does the rest $(q \in(0,1)$ resp $q>1)$ follow? Show that!

$$
f(\lambda \vec{u}+(1-\lambda) \vec{z}) .
$$

\Rightarrow Exercise: Show that everytinng is $o k$ it $\vec{u}=\overrightarrow{0}$.

The case $\vec{u} \neq \overrightarrow{0} \neq \vec{v}$, rough sketch:

$$
\Rightarrow f\left(a_{2}{ }^{2}\right) \cdot f(0)=0
$$

and $\lambda \frac{f(\vec{u})}{f(\vec{p})} \vec{w}+(1-\lambda) \vec{b}$ is a weighted sun. of \vec{w} and \vec{r}, that is:
$S=\lambda \frac{f(\vec{i})}{f(\vec{v})}+(1-\lambda)$ is the sum of weights.

$$
\begin{aligned}
& f(t h a)=S \quad f(6 m+(1-c) b)
\end{aligned}
$$

$$
\begin{aligned}
& 2 \geqslant S \min \{Q(\pi) f(b) \text { if } f \text { quasiconcare }
\end{aligned}
$$

Sine $f(\vec{n})=f(\vec{r})$, tooth the max and the win equal $t f\left(m_{0}\right)+(1-t) f(\vec{\theta})$

Now insert, and got $A f(\vec{r})+(1-d)\left(t^{\circ}\right)$.

Example $f\left(\overrightarrow{x^{\prime}}\right)=x_{1}^{a_{1}} \cdot \ldots \cdot x_{n}^{a_{n}} \quad$ defuse when where each $a_{i}>0$, and $\sum_{i} a_{i} \leqslant 1$:
concave.
This example highlights several crucial properties: $\rightarrow g(\vec{x}):=\ln f(\vec{x})=\sum_{i} a_{i} \ln x_{i}$ is the san of concave

$$
\frac{\text { Concave, }}{\text { posikpe satires }}
$$

Funchoms
$\rightarrow \quad f(\vec{x})=e^{g(\vec{x})}$. exp increasing.

- Recall: what hansformations of a concarelconvex yield concave /convert/ quasiconcare/quasiconwes?
$\rightarrow f$ is quasiconcave and homogeneous of degree $\sum_{i} a_{i} \leqslant 1$, and $f>0$ on the set $\left\{\vec{x}\right.$; all $\left.x_{i}>0\right\} . \Rightarrow$ concave thence. (That f is even concave on $\left\{\vec{x}\right.$; all $\left.x_{i} \geqslant 0\right\}$: continuity! But do not wong)

What else is move important...?
(To be discussed.)

