
ECON4140 Mathematics 3 2019:

Practical information

Books: English OR Norwegian.

Minor curriculum change 2018: the Leibniz rule out (moved to

Math2), more on differential equation systems in Rn.

Some changes to the schedule to be discussed with you.

About this document

For 2018 I hand-wrote notes intended for “preview”:

� Intended for “overview” before the lecture.

� Not for “lecture slideshow”. Lectures were chalk-and-board.

I will hopefully return to that format soon.
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Vector and matrix notation – on the board

This course will use vector and matrix notation.

� ...also in transfomations, i.e., “functions that can output

something else than numbers”. Main focus: ~f outputs a

column m-vector. Such an ~f is just m “Math 2 functions” fi

stacked up in a column vector f(x) =

(
f1(x1,...,xn)

:
fm(x1,...,xn)

)
Question: Handwriting type for the board? Vectors: Overarrow ~x?

Overbar? Undercurl? Blackboard bold? Merely x ∈ Rn? Matrices:

caps? Suggestion:

� Overarrow ~x for vectors: on the board, the above is ~f(~x)

� Overbar capitals A for matrices. Why not arrow?
◦ Book sometimes uses F for vector of functions.

◦ Sometimes I will refer to stats/probability applications. X =

random variable. Capital ~X for random vector, not matrix.

◦ Overarrow notation from physics; rare for matrices.

◦ OTOH: my 2018 notes use arrowheads. (You are free to add

arrowheads if you like!)
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Vector and matrix notation – on the board

Need to distinguish x2 (coord. element no. 2 of ~x) from “vector

number two”. Possible: x(2) for the latter. ~x(2) on the board. But:

� Although – see next slide – should I deviate in “linear algebra

only” applications and use ~aj and ~r>i ?

� Will switch when we get to difference equations, where the

book uses e.g. xt+1 = F(xt), wherein xt is state at time t.

� Book often uses x∗ for optimal point or candidate for optimal.

I might use that even more often.

When to use the symbol y? Often we think y = f(x), but the book

sometimes uses e.g. f(λx+ (1 − λ)y), and ... suggestion:

� I’ll often use u and v for “generic vector input” (~u and ~v on

board). When book uses y, I shall try to avoid using y for

output. E.g., zλ = f(λ~u+ (1 − λ)~v) avoids this.
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Vectors default to columns! (But ...)

The following convention is not uncommon, and I will stick to it

(caveats to be given)

� Vectors are columns unless otherwise stated or clear from

context.
� To get a row: transpose! I will write ~x> for row vector.

◦ Why not the book’s prime symbol? Because we shall now use

derivatives ...

◦ There is a symbol: ∇f(~x) = the row vector of partial first

derivatives. (Write ~∇ if you like ...)

� Example: a matrix A =
(
~a(1) | . . . | ~a(n)

)
has columns {~a(j)}.

To write out its rows: A =

( ~r(1)>

...
~r(m)>

)
has rows {~r(i)>}

◦ Would it be better to write ~aj and ~r>i here, despite ... ?

� In mixing linear algebra and calculus, we often write “det(A)”

or “det A” for determinant to keep them from absolute values. 4



Vectors default to columns! (But ...)

A “cheat” in the convention already: f(x1, . . . , xn) “looks like” ~x

is a row (the variables are on the same line).

� Imagine that we really mean f(~x>) but are too lazy to write it.

� Consistent with ∇f being row: variables counted left-to-right.

Later: if ~f (column) is a transformation, we shall use one row

for each ∇fi. Inputs horizontally, outputs vertically.

� And, often the > is omitted from first-order conditions

∇f(~x∗) = ~0>. I will try to remember it!

Using vector and matrix notation, we can formulate a Lagrange

problem like max f(~x) subject to ~g(~x) = ~b. Later today we shall see

that the conditions can be written ∇f(~x∗) = ~λ> ∂~g∂~x (~x
∗) and the

constrains.
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Some simple (?) linear algebra not stressed in Mathematics 2

� The matrix product A~x can be written as x1~a
(1) + . . . xn~a

(n).

And ~u>A = u1~r
(1)> + · · ·+ um~r(m)>.

� ~x itself equals x1~e
(1) + . . . xn~e

(n), where ~e(j) is the jth
standard unit vector: 1 at element j, zeroes elsewhere.
◦ IOW, ~e(j) is the jth column of the identity matrix I.

◦ The collection of ~e(j) vectors are called the “standard basis”

for Rn. We are not going to fiddle around with bases, but we

shall sometimes use properties that a so-called linear

combination c1~v
(1) + . . . cn~v

(n) can represent any point in Rn.

� Q: You have a matrix A. Pick a single element aij; is it

possible to write that element in linear algebra terms?

A: Yes. It is the form ~e(k)>A~e(`) ... but what is k and `?

Exercise: which is j and which is i?

� Quadratic functions f(~x) = ~x>A~x+ ~b>~x+ c [later]

� Matrices as linear transformations. [next slide] 6



Matrices as linear transformations

Mathematics 2 focuses on matrices as objects in their own right.

But let ~f(~x) = Ax where A is m× n; i.e., ~f outputs m-vectors.

This ~f is linear: it has the property that
~f(α~u+β~v) = α~f(~u)+β~f(~v). [you know “linear” vs “affine”?]

� Fact: each linear transformation from Rn to Rm is of the

form Ax, some A.

� Example: If f(~x) turns the n-vector upside down and returns

(xn, xn−1, . . . , x1)
>, then A =

( 0 ... 0 1
0 ... 1 0

...
0 1 0 ...
1 0 ... 0

)

We want to differentiate transformations. And just like the

function g(t) = at has derivative g ′(t) = a, the transformation

A~x should have a derivative of A.

� In particular, we want ∂~x∂~x = ... what? 7



Derivatives

Already have: if f is a function (real function outputting real

numbers, not vectors ...) then we can gather its first derivatives in

a row vector ∇f(~x).
Called the gradient of f. Differential: ∇f d~x, i.e.:

First-order approximation: f(~x) ≈ f(~x∗) +∇f(~x∗) (~x− ~x∗).

Questions:

� Transformations ...?

� Differentiation rules?

� Second derivatives ...?

Last first: If f is a real function, then the Hessian matrix H = H(~x)

of f has elements hij = f
′′
ij(~x). [Second-order approx. = . . . ?]

For transformations, we have no such second-derivative matrix.

(Not to say that second derivatives do not exist – just that it needs more

than matrices to formulate compactly. Not this course!)
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Derivatives: The Jacobian of a transformation

Let ~f = (f1, . . . , fm)> be a transformation. It so-called Jacobian is

the matrix of first derivatives, so that row i is the gradient of fi.

� Matrix of first derivatives – not the Hessian!

� I will use the notation ∂~f
∂~x to avoid the prime symbol.

Or sometimes write “Jacobi[f]”.

You might find ~f ′(~x) in the literature, though I will avoid it.

� Differential: ∂
~f
∂~x d~x.

First-order approximation: ~f(~x) ≈ ~f(~x∗) + ∂~f(~x∗)
∂~x (~x− ~x∗)s.

� Confused over “element (3,2)” vs “element (2,3)”?
◦ It is input horizontally and output vertically.

◦ Easier to keep track of if m 6= n: the orders must match to

make ∂~f
∂~xd~x meaningful.

� Examples: ∂~x∂~x = I. And
(
x21+x

2
2

x1x2+x3

)
has Jacobian

(
2x1 2x2 0
x2 x1 1

)
.

� Example: The Jacobian of ~f := (∇g(~x))> is the Hessian of g.
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Derivatives: Rules: linearity and the chain rule

Linearity: Just as d
dt(αf(t) + βg(t)) = αḟ+ βġ (constant α, β):

� α ~f(~x) + β ~g(~x) has Jacobian = α ∂~f
∂~x + β ∂~g∂~x

� A ~f(~x) + B ~g(~x) has Jacobian = A ∂~f
∂~x + B ∂~g∂~x

(for constant matrices A, B – incl. row vectors ~a>, ~b>.)

� First-order approximation: A ~f(~x) + B ~g(~x)

≈ A ~f(~x∗) + B ~g(~x∗) +
(
A
∂~f(~x∗)

∂~x
+ B

∂~g(~x∗)

∂~x

)
(~x− ~x∗)

The chain rule (nice!): ~z(~x) = ~f(~g(~x)) has Jacobian

∂~z

∂~x
=
∂~f

∂~y

∂~g

∂~x

∣∣∣
~y=~g(~x)

(note: k×m by m× n if ~y ∈ Rm)

� If ~f is linear, it is multiplication by some matrix, cf. above.

� Example: If ~g is linear, ~z = ~f(A~x):
∂(~f(A~x))

∂~x
=
∂~f

∂~y

∣∣∣
~y=A~x

A

◦ If furthermore k = 1 so ~f = f, we can use this to get a Hessian.

∇z = ∇f|~y=A~xA and Jacobi[(∇z)>]> = (Hesse[f]
∣∣
~y=A~x

)>A,

so Hesse[z] = A
>

Hesse[f]
∣∣
~y=A~x

A (as Hessians are symmetric).
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Derivatives: product rules

Product rules could require some thinking:
� The real function f(~x)g(~x) has gradient g∇f+ f∇g.
� Thus if ~f, ~g are transformations, the real function
~f>~g =

∑
i figi has gradient

∑
i[gi ∇fi + fi ∇gi], which

equals (the row vector) ~f> ∂~g∂~x + ~g> ∂
~f
∂~x .

◦ Example (also, previous slide): ~a>~x has gradient ~a>.

◦ Example: ~x>A~x. Let ~f = ~x and ~g = A~x (Jacobians I and A.

We get gradient ~x>A+ (A~x)>I = ~x>(A+A
>
).

Note that ~x>A~x = ~x>A
>
~x = 1

2
~x>(A+A

>
)~x. More later!

� If f is a real function and ~g is a transformation, then the

transformation f~g has a Jacobian whose row i is

gi ∇f+ f∇gi. That is, ∂[f~g]∂x = ~g∇f+ f∂~g∂x .

Note the orders of ~g∇f: it is (m× 1) by (1× n).

“Combining rules” example: ∇||~x|| = ∇
√
~x>~x = 1

2~x>~x
~x(I+ I

>
) = ...

... so ||~x|| has Hessian = Jacobi[ 1
||~x||x] = [not trivial exercise!] 11



Derivatives: cases too ugly for ordinary linear algebra

Some things are not so nice. Just to mention:

� There is no third derivative matrix for a function of more than

1 variable. It would have to be a 3D cubic array.

� If f is a real function, then the Hessian of f(~g(~x)) cannot be

written as a matrix product except special cases: the second

derivative of ~g would be a 3D cubic array.

� The transformation F(x)~g(x), has a Jacobian whose row i

equals the (“Math 3 calculatable”) gradient of ~r(i) T~g.
(That’s row i of F.) We cannot outright write this as a matrix
product. But the differential can be written (dF)g+ Fd~g.

Of course, if F constant, then dF = 0 and we are back to linearity.

But on the other hand, if there is only one variable: a matrix

M(t) is differentiated element-wise as far as each element is

differentiable. Ṁ(t), M̈(t) or even
...
M(t)? No prob! 12



Continuity and differentiability – some technicalities that will

be glossed over, and some issues we will cover

Continuity of in more than one variable, is quite a delicate matter.

� Let f(x,y) = 1 when x2 < y < 2x2, and 0 elsewhere. f is

certainly not continuous at (0, 0), but both f ′x(0, 0) and

f ′y(0, 0) exist and are 0. So: existence of partial derivatives

does not even grant continuity of the function!

� However, if the partial derivatives are continuous on some

neighbourhood – not merely at the point – we are in business.

� By multivariate “differentiability” we actually mean that the

first-order approximation “is good”. I’ll skip the details.

More non-differentiabilities in this course than in Mathematics 2!

� Shall cover: non-differentiable concave/convex functions

� Will encounter optimal control problems where you jump

straight from “max saving, no consumption” to other corner.
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Curriculum! Implicit derivatives; the implicit function theorem

Recall differentiation in equation systems from Mathematics 2. Let
~f = ~f(~x, ~u) take as input n+m variables ~x ∈ Rn and ~u ∈ Rm,

and output m-vectors.

� We have written f as function of two vectors. Notation: let

∂~f

∂~x
=


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

...
∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn

 and similar for
∂~f

∂~u
.

◦ I.e.: ∂
~f
∂~x “as if ~u were constant” and vice versa.

� Formal differentiation yields ~0 = ∂~f
∂~x d~x+

∂~f
∂~u d~u and so

∂~u
∂~x = −

(
∂~f
∂~u

)−1 ∂~f
∂~x for the transformation ~u = ~u(~x).

� Valid? Fact: Pick a point P : (~x∗, ~u∗) with ~f(~x∗, ~u∗) = ~c.

Assume that on some neighbourhood of P, we have ~f

continuously differentiable (i.e., in each coordinate) with ∂f
∂u

invertible at P. Then there exists indeed a transformation

~u = ~u(~x) with that Jacobian. 14


