ECON4140 Mathematics 3 2019:

Practical information

Books: English OR Norwegian.
Minor curriculum change 2018: the Leibniz rule out (moved to Math2), more on differential equation systems in \mathbb{R}^{n}.

Some changes to the schedule to be discussed with you.

About this document

For 2018 I hand-wrote notes intended for "preview":

- Intended for "overview" before the lecture.
- Not for "lecture slideshow". Lectures were chalk-and-board.

I will hopefully return to that format soon.

Vector and matrix notation - on the board

This course will use vector and matrix notation.

- ...also in transfomations, i.e., "functions that can output something else than numbers". Main focus: \vec{f} outputs a column m-vector. Such an \vec{f} is just m "Math 2 functions" f_{i} stacked up in a column vector $\mathbf{f}(\mathbf{x})=\binom{f_{1}\left(x_{1}, \ldots, x_{n}\right)}{f_{m}\left(x_{1}, \ldots, x_{n}\right)}$
Question: Handwriting type for the board? Vectors: Overarrow \vec{x} ?
Overbar? Undercurl? Blackboard bold? Merely $x \in \mathbb{R}^{n}$? Matrices: caps? Suggestion:
- Overarrow \vec{x} for vectors: on the board, the above is $\vec{f}(\vec{x})$
- Overbar capitals \bar{A} for matrices. Why not arrow?
- Book sometimes uses F for vector of functions.
- Sometimes I will refer to stats/probability applications. $X=$ random variable. Capital \vec{X} for random vector, not matrix.
- Overarrow notation from physics; rare for matrices.
- OTOH: my 2018 notes use arrowheads. (You are free to add arrowheads if you like!)

Vector and matrix notation - on the board

Need to distinguish x_{2} (coord. element no. 2 of \vec{x}) from "vector number two". Possible: $\mathbf{x}^{(2)}$ for the latter. $\vec{x}^{(2)}$ on the board. But:

- Although - see next slide - should I deviate in "linear algebra only" applications and use \vec{a}_{j} and \vec{r}_{i}^{\top} ?
- Will switch when we get to difference equations, where the book uses e.g. $\mathbf{x}_{\mathrm{t}+1}=\mathbf{F}\left(\mathbf{x}_{\mathrm{t}}\right)$, wherein x_{t} is state at time t .
- Book often uses \mathbf{x}^{*} for optimal point or candidate for optimal. I might use that even more often.

When to use the symbol y ? Often we think $y=f(x)$, but the book sometimes uses e.g. $f(\lambda x+(1-\lambda) \mathbf{y})$, and \ldots suggestion:

- I'll often use \mathbf{u} and \mathbf{v} for "generic vector input" (\vec{u} and \vec{v} on board). When book uses \mathbf{y}, I shall try to avoid using y for output. E.g., $z_{\lambda}=f(\lambda \vec{u}+(1-\lambda) \vec{v})$ avoids this.

Vectors default to columns! (But ...)

The following convention is not uncommon, and I will stick to it (caveats to be given)

- Vectors are columns unless otherwise stated or clear from context.
- To get a row: transpose! I will write $\vec{\chi}^{\top}$ for row vector.
- Why not the book's prime symbol? Because we shall now use derivatives ...
- There is a symbol: $\nabla f(\vec{x})=$ the row vector of partial first derivatives. (Write $\vec{\nabla}$ if you like ...)
- Example: a matrix $\bar{A}=\left(\vec{a}^{(1)}|\ldots| \vec{a}^{(n)}\right)$ has columns $\left\{\vec{a}^{(j)}\right\}$.

To write out its rows: $\bar{A}=\left(\begin{array}{c}\vec{r}^{(1) \top} \\ \vdots \\ \overrightarrow{r^{(m) T}}\end{array}\right)$ has rows $\left\{\vec{r}^{(i) \top}\right\}$

- Would it be better to write $\overrightarrow{\mathrm{a}}_{\mathrm{j}}$ and $\overrightarrow{\mathrm{r}}_{\mathrm{i}}^{\top}$ here, despite ... ?
- In mixing linear algebra and calculus, we often write " $\operatorname{det}(\overline{\bar{A}})$ " or "det \bar{A} " for determinant to keep them from absolute values.

Vectors default to columns! (But ...)

A "cheat" in the convention already: $f\left(x_{1}, \ldots, x_{n}\right)$ "looks like" \vec{x} is a row (the variables are on the same line).

- Imagine that we really mean $f\left(\vec{x}^{\top}\right)$ but are too lazy to write it.
- Consistent with $\nabla \mathrm{f}$ being row: variables counted left-to-right. Later: if \vec{f} (column) is a transformation, we shall use one row for each ∇f_{i}. Inputs horizontally, outputs vertically.
- And, often the ${ }^{\top}$ is omitted from first-order conditions $\nabla f\left(\vec{x}^{*}\right)=\overrightarrow{0}^{\top}$. I will try to remember it!

Using vector and matrix notation, we can formulate a Lagrange problem like $\max f(\vec{x})$ subject to $\vec{g}(\vec{x})=\vec{b}$. Later today we shall see that the conditions can be written $\nabla f\left(\vec{x}^{*}\right)=\vec{\lambda}^{\top} \frac{\partial \vec{g}}{\partial \vec{x}}\left(\vec{x}^{*}\right)$ and the constrains.

Some simple (?) linear algebra not stressed in Mathematics 2

- The matrix product $\bar{A} \vec{x}$ can be written as $x_{1} \vec{a}^{(1)}+\ldots x_{n} \vec{a}^{(n)}$. And $\vec{u}^{\top} \bar{A}=u_{1} \vec{r}^{(1) \top}+\cdots+u_{m} \vec{r}^{(m) \top}$.
- $\vec{\chi}$ itself equals $x_{1} \vec{e}^{(1)}+\ldots x_{n} \vec{e}^{(n)}$, where $\vec{e}^{(j)}$ is the j th standard unit vector: 1 at element \mathfrak{j}, zeroes elsewhere.
- IOW, $\vec{e}^{(j)}$ is the j th column of the identity matrix $\overline{\mathrm{I}}$.
- The collection of $\vec{e}^{(j)}$ vectors are called the "standard basis" for \mathbb{R}^{n}. We are not going to fiddle around with bases, but we shall sometimes use properties that a so-called linear combination $c_{1} \vec{v}^{(1)}+\ldots c_{n} \vec{v}^{(n)}$ can represent any point in \mathbb{R}^{n}.
- Q: You have a matrix \bar{A}. Pick a single element $a_{i j}$; is it possible to write that element in linear algebra terms?
A: Yes. It is the form $\vec{e}^{(k) \top} \bar{A} \vec{e}^{(\ell)} \ldots$ but what is k and ℓ ?
Exercise: which is j and which is i ?
- Quadratic functions $f(\vec{x})=\vec{x}^{\top} \bar{A} \vec{x}+\vec{b}^{\top} \vec{x}+c$
- Matrices as linear transformations.

Matrices as linear transformations

Mathematics 2 focuses on matrices as objects in their own right. But let $\vec{f}(\vec{x})=\bar{A} \mathbf{x}$ where \bar{A} is $m \times n$; i.e., \vec{f} outputs m-vectors. This \vec{f} is linear: it has the property that
$\vec{f}(\alpha \vec{u}+\beta \vec{v})=\alpha \vec{f}(\vec{u})+\beta \vec{f}(\vec{v})$. [you know "linear" vs "affine"?]

- Fact: each linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is of the form $\bar{A} \mathbf{x}$, some \bar{A}.
- Example: If $f(\vec{x})$ turns the n-vector upside down and returns

$$
\left(x_{n}, x_{n-1}, \ldots, x_{1}\right)^{\top} \text {, then } \bar{A}=\left(\begin{array}{cccc}
0 & \ldots & 0 & 1 \\
0 & \ldots & 1 & 0 \\
& \vdots & \vdots \\
0 & 1 & 0 & \ldots \\
1 & 0 & \ldots & 0
\end{array}\right)
$$

We want to differentiate transformations. And just like the function $g(t)=a t$ has derivative $g^{\prime}(t)=a$, the transformation $\bar{A} \vec{x}$ should have a derivative of \bar{A}.

- In particular, we want $\frac{\partial \vec{x}}{\partial \vec{x}}=\ldots$ what?

Derivatives

Already have: if f is a function (real function outputting real numbers, not vectors ...) then we can gather its first derivatives in a row vector $\nabla f(\vec{x})$.
Called the gradient of f . Differential: $\nabla \mathrm{f} d \overrightarrow{\mathrm{x}}$, i.e.:
First-order approximation: $f(\vec{x}) \approx f\left(\vec{x}^{*}\right)+\nabla f\left(\vec{x}^{*}\right)\left(\vec{x}-\vec{x}^{*}\right)$.
Questions:

- Transformations ...?
- Differentiation rules?
- Second derivatives ...?

Last first: If f is a real function, then the Hessian matrix $\overline{\mathrm{H}}=\overline{\mathrm{H}}(\overrightarrow{\mathrm{x}})$ of f has elements $h_{i j}=f_{i j}^{\prime \prime}(\vec{x})$. [Second-order approx. $=\ldots$?] For transformations, we have no such second-derivative matrix.
(Not to say that second derivatives do not exist - just that it needs more than matrices to formulate compactly. Not this course!)

Derivatives: The Jacobian of a transformation

Let $\vec{f}=\left(f_{1}, \ldots, f_{m}\right)^{\top}$ be a transformation. It so-called Jacobian is the matrix of first derivatives, so that row i is the gradient of f_{i}.

- Matrix of first derivatives - not the Hessian!
- I will use the notation $\frac{\partial \vec{f}}{\partial \vec{x}}$ to avoid the prime symbol. Or sometimes write "Jacobi[f]".
You might find $\vec{f}^{\prime}(\vec{x})$ in the literature, though I will avoid it.
- Differential: $\frac{\partial \vec{f}}{\partial \vec{x}} \mathrm{~d} \vec{\chi}$.

First-order approximation: $\vec{f}(\vec{x}) \approx \vec{f}\left(\vec{x}^{*}\right)+\frac{\partial \vec{f}\left(\vec{x}^{*}\right)}{\partial \vec{x}}\left(\vec{x}-\vec{x}^{*}\right)$ s.

- Confused over "element $(3,2)$ " vs "element $(2,3)$ " ?
- It is input horizontally and output vertically.
- Easier to keep track of if $m \neq n$: the orders must match to make $\frac{\partial \vec{f}}{\partial \vec{x}} \mathrm{~d} \vec{\chi}$ meaningful.
- Examples: $\frac{\partial \vec{x}}{\partial \vec{x}}=\overline{\mathrm{I}}$. And $\binom{x_{1}^{2}+x_{2}^{2}}{x_{1} x_{2}+x_{3}}$ has Jacobian $\left(\begin{array}{ccc}2 x_{1} & 2 x_{2} & 0 \\ x_{2} & x_{1} & 1\end{array}\right)$.
- Example: The Jacobian of $\vec{f}:=(\nabla g(\vec{x}))^{\top}$ is the Hessian of g.

Derivatives: Rules: linearity and the chain rule

Linearity: Just as $\frac{d}{d t}(\alpha f(t)+\beta g(t))=\alpha \dot{f}+\beta \dot{g}($ constant $\alpha, \beta)$:

- $\alpha \vec{f}(\vec{x})+\beta \vec{g}(\vec{x})$ has Jacobian $=\alpha \frac{\partial \vec{f}}{\partial \vec{x}}+\beta \frac{\partial \vec{g}}{\partial \bar{x}}$
- $\bar{A} \vec{f}(\vec{x})+\bar{B} \vec{g}(\vec{x})$ has Jacobian $=\bar{A} \frac{\partial \vec{f}}{\partial \bar{x}}+\bar{B} \frac{\partial \vec{g}}{\partial \bar{x}}$
(for constant matrices $\bar{A}, \bar{B}-$ incl. row vectors $\vec{a}^{\top}, \vec{b}^{\top}$.)
- First-order approximation: $\bar{A} \vec{f}(\vec{x})+\bar{B} \vec{g}(\vec{x})$

$$
\approx \bar{A} \vec{f}\left(\vec{x}^{*}\right)+\bar{B} \vec{g}\left(\vec{x}^{*}\right)+\left(\bar{A} \frac{\partial \vec{f}\left(\vec{x}^{*}\right)}{\partial \vec{x}}+\bar{B} \frac{\partial \vec{g}\left(\vec{x}^{*}\right)}{\partial \vec{x}}\right)\left(\vec{x}-\vec{x}^{*}\right)
$$

The chain rule (nice!): $\quad \vec{z}(\vec{x})=\vec{f}(\vec{g}(\vec{x}))$ has Jacobian

$$
\frac{\partial \vec{z}}{\partial \vec{x}}=\left.\frac{\partial \vec{f}}{\partial \vec{y}} \frac{\partial \vec{g}}{\partial \vec{x}}\right|_{\vec{y}=\vec{g}(\vec{x})} \quad\left(\text { note: } k \times m \text { by } m \times n \text { if } \vec{y} \in \mathbb{R}^{m}\right)
$$

- If \vec{f} is linear, it is multiplication by some matrix, cf. above.
- Example: If \vec{g} is linear, $\vec{z}=\vec{f}(\bar{A} \vec{x}): \quad \frac{\partial(\vec{f}(\bar{A} \vec{x}))}{\partial \vec{x}}=\left.\frac{\partial \vec{f}}{\partial \vec{y}}\right|_{\vec{y}=\bar{A} \vec{x}} \overline{\bar{A}}$
- If furthermore $k=1$ so $\vec{f}=f$, we can use this to get a Hessian.

$$
\nabla z=\left.\nabla f\right|_{\vec{y}=\bar{A} \vec{x}} \bar{A} \text { and } \operatorname{Jacobi}\left[(\nabla z)^{\top}\right]^{\top}=\left(\text { Hesse }\left.[f]\right|_{\vec{y}=\bar{A} \vec{x}}\right)^{\top} \bar{A} \text {, }
$$

$$
\text { so Hesse }[z]=\bar{A}^{\top} \text { Hesse }\left.[f]\right|_{\bar{y}=\bar{A} \bar{x}} \overline{\bar{A}} \text { (as Hessians are symmetric). }
$$

Derivatives: product rules

Product rules could require some thinking:

- The real function $f(\vec{x}) g(\vec{x})$ has gradient $g \nabla f+f \nabla g$.
- Thus if \vec{f}, \vec{g} are transformations, the real function $\overrightarrow{f^{\top}} \vec{g}=\sum_{i} f_{i} g_{i}$ has gradient $\sum_{i}\left[g_{i} \nabla f_{i}+f_{i} \nabla g_{i}\right]$, which equals (the row vector) $\quad \vec{f}^{\top} \frac{\partial \vec{g}}{\partial \vec{x}}+\vec{g}^{\top} \frac{\partial \vec{f}}{\partial \vec{x}}$.
- Example (also, previous slide): $\vec{a}^{\top} \vec{x}$ has gradient \vec{a}^{\top}.
- Example: $\vec{x}^{\top} \bar{A} \vec{x}$. Let $\vec{f}=\vec{x}$ and $\vec{g}=\bar{A} \vec{x}$ (Jacobians \bar{I} and \bar{A}.

We get gradient $\vec{x}^{\top} \bar{A}+(\bar{A} \vec{x})^{\top} \bar{I}=\vec{x}^{\top}\left(\bar{A}+\bar{A}^{\top}\right)$.
Note that $\vec{x}^{\top} \bar{A} \vec{x}=\vec{x}^{\top} \bar{A}^{\top} \vec{x}=\frac{1}{2} \vec{x}^{\top}\left(\bar{A}+\bar{A}^{\top}\right) \vec{x}$. More later!

- If f is a real function and \vec{g} is a transformation, then the transformation $f \vec{g}$ has a Jacobian whose row i is
$g_{i} \nabla f+f \nabla g_{i}$. That is, $\frac{\partial[f \vec{g}]}{\partial x}=\vec{g} \nabla f+f \frac{\partial \vec{g}}{\partial x}$.
Note the orders of $\vec{g} \nabla f$: it is $(m \times 1)$ by $(1 \times n)$.
"Combining rules" example: $\nabla\|\vec{x}\|=\nabla \sqrt{\vec{x}^{\top} \vec{x}}=\frac{1}{2 \vec{x}^{\top}} \vec{x} \vec{x}\left(\overline{\mathrm{I}}+\overline{\mathrm{I}}^{\top}\right)=\ldots$
... so $\|\vec{x}\|$ has Hessian $=$ Jacobi $\left[\frac{1}{\|\vec{x}\|} x\right]=[$ not trivial exercise! $]$

Derivatives: cases too ugly for ordinary linear algebra

Some things are not so nice. Just to mention:

- There is no third derivative matrix for a function of more than 1 variable. It would have to be a 3D cubic array.
- If f is a real function, then the Hessian of $f(\vec{g}(\vec{x}))$ cannot be written as a matrix product except special cases: the second derivative of \vec{g} would be a 3D cubic array.
- The transformation $\bar{F}(x) \vec{g}(x)$, has a Jacobian whose row i equals the ("Math 3 calculatable") gradient of $\vec{r}^{(i) \top} \vec{g}$. (That's row i of $\overline{\mathrm{F}}$.) We cannot outright write this as a matrix product. But the differential can be written ($\mathrm{d} \overline{\mathrm{F}}$) $\mathrm{g}+\overline{\mathrm{F}} \mathrm{d} \overrightarrow{\mathrm{g}}$. Of course, if $\overline{\mathrm{F}}$ constant, then $\mathrm{d} \overline{\mathrm{F}}=\overline{0}$ and we are back to linearity.

But on the other hand, if there is only one variable: a matrix $\bar{M}(t)$ is differentiated element-wise as far as each element is differentiable. $\dot{\bar{M}}(\mathrm{t}), \ddot{\bar{M}}(\mathrm{t})$ or even $\frac{\cdots}{\bar{M}}(\mathrm{t})$? No prob!

Continuity and differentiability - some technicalities that will be glossed over, and some issues we will cover

Continuity of in more than one variable, is quite a delicate matter.

- Let $f(x, y)=1$ when $x^{2}<y<2 x^{2}$, and 0 elsewhere. f is certainly not continuous at $(0,0)$, but both $f_{x}^{\prime}(0,0)$ and $f_{y}^{\prime}(0,0)$ exist and are 0 . So: existence of partial derivatives does not even grant continuity of the function!
- However, if the partial derivatives are continuous on some neighbourhood - not merely at the point - we are in business.
- By multivariate "differentiability" we actually mean that the first-order approximation "is good". I'll skip the details.

More non-differentiabilities in this course than in Mathematics 2!

- Shall cover: non-differentiable concave/convex functions
- Will encounter optimal control problems where you jump straight from "max saving, no consumption" to other corner.

Curriculum! Implicit derivatives; the implicit function theorem

Recall differentiation in equation systems from Mathematics 2. Let $\vec{f}=\vec{f}(\vec{x}, \vec{u})$ take as input $n+m$ variables $\vec{x} \in \mathbb{R}^{n}$ and $\vec{u} \in \mathbb{R}^{m}$, and output m-vectors.

- We have written f as function of two vectors. Notation: let $\frac{\partial \vec{f}}{\partial \vec{x}}=\left(\begin{array}{cccc}\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ & \vdots & & \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}\end{array}\right)$ and similar for $\frac{\partial \vec{f}}{\partial \vec{u}}$.
- I.e.: $\frac{\partial \vec{f}}{\partial \vec{x}}$ "as if \vec{u} were constant" and vice versa.
- Formal differentiation yields $\overrightarrow{0}=\frac{\partial \vec{f}}{\partial \vec{x}} d \vec{x}+\frac{\partial \vec{f}}{\partial \vec{u}} d \vec{u}$ and so $\frac{\partial \vec{u}}{\partial \ddot{x}}=-\left(\frac{\partial \vec{f}}{\partial \vec{u}}\right)^{-1} \frac{\partial \vec{f}}{\partial \vec{x}}$ for the transformation $\vec{u}=\vec{u}(\vec{x})$.
- Valid? Fact: Pick a point P: $\left(\vec{x}^{*}, \overrightarrow{\mathrm{u}}^{*}\right)$ with $\overrightarrow{\mathrm{f}}\left(\overrightarrow{\mathrm{x}}^{*}, \overrightarrow{\mathrm{u}}^{*}\right)=\overrightarrow{\mathrm{c}}$. Assume that on some neighbourhood of P, we have \vec{f} continuously differentiable (i.e., in each coordinate) with $\frac{\partial f}{\partial u}$ invertible at P. Then there exists indeed a transformation $\vec{u}=\vec{u}(\vec{x})$ with that Jacobian.

