
Essentials of optimal control theory in ECON 4140 (2019-draft)
Things you need to know (and a few things you need not care about).

A few words about dynamic optimization in general. Dynamic optimization can be
thought of as �nding the best function rather than the best point. We have two tools:

• Dynamic programming. In ECON4140, that is used for discrete-time dynamic opti-
mization. The method involves the optimal value. If value depends on state x ∈ R
and time t and the optimal value is Vt(xt), then one trades o� immediate payo�
f (direct utility) against future optimal value (indirect utility) Vt+1(xt+1). If our
control at time t is ut, f = f(t, x, u) depends on time, state and control, and so
does xt+1 = g(t, x, u), then the best we can do with state xt = x is to maximize
f(t, x, u) + Vt+1(g(t, x, u)) wrt. our control u. If Vt+1 is a known function, that gives
us the optimal u∗t in �feedback form�, as a function1 of time and state.

� In �nite horizon T , we can recurse backwards with known VT , then VT−1, ...

� In�nite horizon models has some appealing properties, one of which is that if
there is no explicit time in the dynamics and only exponential discounting then
the time-dimension vanishes. Using a current-value formulation βtf cv = f and
assuming f cv a function of state and control only (no �t�) as well as xt+1 =
g(xt, ut) (also without explicit t), we get the Bellman equation

V (x) = max
u

{
f cv(x, u) + βV (g(x, u))

}
with the same V on the LHS and the RHS (there are in�nitely many steps left
both today and tomorrow). The optimal u is given implicitly in terms of V .

• Calculus of variations or the Pontryagin maximum principle. These methods work
by varying the strategy, and do not require the value function. There is no �V � in
the Hamiltonian nor in the Euler equation, there is only state and control (and in
the calculus of variations method, the control is ẋ).

� The discrete-time Euler equation (you have seen it in dynamic macro?) does
in a way the same thing: Consider a time-homogeneous problem with current-
value formulationmax

∑∞
t=0 β

tf cv(xt, xt+1). The �rst-order condition for optimal
state xτ at a certain time τ ∈ N is found by taking the two terms that involve it
(namely βτ−1f cv(xτ−1, xτ )+β

τf cv(xτ , xτ+1)), di�erentiating wrt. xτ and putting
equal to zero. Notice: no �V � in that condition.

• ECON4140 uses dynamic programming in discrete time and the maximum principle
in continuous time. There exist a continuous-time Bellman equation (often used in
stochastic systems) and a discrete-time maximum principle, but those are not at all
curriculum.

1if the maximizer is not unique, is it then a function? Then, it does not matter which one we choose, so
we can pick a function.
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The maximum principle. Necessary conditions. Let the timeframe [t0, t1] be given
2.

Consider the problem to maximize wrt. u(t) ∈ U (a given set ⊆ R) the functional∫ t1

t0

f(t, x(t), u(t)) dt

where x starts at x(t0) = x0 (given) and evolves as ẋ(t) = g(t, x(t), u(t)); we shall consider
the following three possible terminal conditions:

(a) x(t1) = x1 (given); or (b) x(t1) ≥ x1; or (c) x(t1) free.

Imagine a trade-o� between immediate payo� (or, direct utility) today f(t, x, u) and
growth ẋ of the state. With ẋ(t) = g(t, x, u), we weigh immediate payo� at one3 and weigh
growth at p = p(t). Our control is then set to maximize the Hamiltonian

H(t, x, u, p) = f(t, x, u) + pg(t, x, u)

(over u in the control region U which we are allowed to choose from � it need not be interior).
The rest of the maximum principle is about determining a weight p such that this gives
us a solution to the dynamic problem. p is often referred to as the �adjoint variable� or
�costate� or sometimes �shadow price�. The following gives necessary conditions:

0: Form the Hamiltonian H(t, x, u, p) = f(t, x, u) + pg(t, x, u).

1: The optimal u∗ maximizes H.

2: The adjoint p satis�es ṗ = −∂H
∂x

(evaluated at optimum), with the so-called transversality

conditions on p(t1):
(a') no condition on p(t1) if the problem has x(t1) = x1; (b') if the problem imposes
x(t1) ≥ x1, then p(t1) ≥ 0 with equality if x∗(t1) > x1 in optimum; (c') if there is no
restriction on x(t1), then p(t1) must be = 0.

3: Also, the di�. eq. for x must hold: an optimal x∗ must satisfy ẋ∗(t) = g(t, x∗(t), u∗(t))
with initial condition x∗(t0) = x0 and if applicable, the terminal condition.

These conditions may be regarded as a solution steps recipe although in practice it may
not be so straightforward as to call it a �cookbook�. Next page:
2Last page, 3rd-to-last headline: there are problems where time can be optimized too.
3Here there is a theoretical catch which is not exam relevant, except see the second bullet below in order
not to be confused by any �p0�:
Suppose that there is no �optimization�, and that there is only one control u∗(t) such that the terminal
condition holds. If your control has to be reserved to ful�ll that condition, then you cannot optimize for
utility. Then the weight on f has to be zero. That is the �p0� constant in the book, which looks a bit
akin to the Fritz John type conditions covering the constraint quali�cation in nonlinear programming.

• You can disregard the p0 (i.e., put it equal to one) for exam purposes.

• But: Do not put p(t0) equal to one, because the constant p0 is not the same thing as p(t0)!
(Nor the same as p(0). In case you wonder what the notation is about: it is from the case with
several states x ∈ Rn. Then we have an n-dimensional p(t), and the p0 is then the �zeroeth�
dimension.)

2



Making a recipe out of the conditions. Often, the following procedure is fruitful:

step 0: Form the Hamiltonian H(t, x, u, p) = f(t, x, u) + pg(t, x, u).

step 1: The optimal u∗ maximizes H.

• Whatever state x and costate pmight be, then that gives us a relation between
u∗ and (t, x, p). With the possible reservation that the maximizer may not be
unique4, this gives us u∗ as a function

û of (t, x, p)

where x = x∗ is the optimal state, and p is the adjoint satisfying the next
step. (Note that in practice you may have to split between cases.)

step 2: We have a di�erential equation for p:
ṗ = −∂H

∂x
(evaluated at optimum), and the transversality condition:

(a') In case the terminal value x(t1) is �xed, there is no condition on p(t1).

(b') In case the problem imposes x(t1) ≥ x1, then we get a complementary slackness
condition on p(t1): it is ≥ 0, with equality if x(t1) > x1 (the latter corresponds
to the next item).

(c') If there is no restriction on x(t1), then p(t1) must be = 0.

If we have a function û(t, x, p) for the optimal control, then plugging this into −∂H
∂x

will give ṗ as a function of (t, x∗, p).

step 3: Then we have the di�erential equation for the state. Inserting û there as well, gives
a di�erential equation system

ẋ∗ = φ(t, x∗, p), ṗ = ψ(t, x∗, p)

and the conditions on x(t0), x(t1) and p(t1) determine the integration constants.

The 2018 handwritten lecture notes?

• Lecture 1, we covered most of 2018 note 1, with �simple examples� 1 and 2 therein.

• Exercise: Ex. 3 of that note was not covered; work it out using the below recipe.

• Lecture 2, we covered su�cient conditions from 2018 note 2 and example A' below.
Also started on a (too) complicated modi�cation; see this note's example A� instead.

• Lecture 3, we covered the rest of 2018 note 2 except the example page 3; instead, I
used the last example to illustrate sensitivity results (∂V/∂K0 ≤ 8, why? ∂V/∂T =?).
Furthermore, we covered example C in this note.

• 2018 lecture note 3? Read if you like, but get a grip on this note �rst.

4in which case several functions are possible. For necessary conditions, you should consider them all. For
su�cient conditions, you may �guess one and verify that it solves�. See the �modi�ed example 2�.
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Sufficient conditions. We have two5 sets of su�cient conditions. Suppose we have found
an admissible pair (x∗, u∗) satisfying the necessary conditions. This pair is a candidate for
optimality. We can conclude that it is indeed optimal if it satis�es one of the following:

• The Mangasarian su�ciency condition: With the p = p(t) that the maximum prin-
ciple produces, then H is concave wrt. (x, u) for all t ∈ (t0, t1).

• The Arrow su�ciency condition: Insert the function û(t, x, p) for u in the Hamiltonian
to get the function Ĥ(t, x, p) = H(t, x, û(t, x, p), p). With the p = p(t) that the
maximum principle produces, then Ĥ is concave wrt. x for all t ∈ (t0, t1).

Notes: The Arrow condition is �more powerful�: it applies whenever Mangasarian does,
and way beyond; indeed, Arrow does not even require the control region U to be a convex
set. (Norsk: konveksitetsantakelsen i MA II Setning 12.7.1 er over�ødig.) On the other
hand, Mangasarian could be easier to verify up-front, as the next example shows.

«Example» A (to be worked out later using current-value). A concave problem.
In matrix notation, let f(t, x, u) =

[(
k1, k2)

(
x
u

)
− 1

2
(x, u)Q

(
x
u

)]
e−rt where Q =

(
q11 q12
q12 q22

)
is symmetric and positive semide�nite with q22 > 0, and let g(t, x, u) = (m1, m2)

(
x
u

)
.

Suppose u can take any real value. No matter what the terminal condition on x is, we will
have H(t, x, u, p) = f + pg is concave in (x, u) regardless of the sign of p, so Mangasarian
will apply to the solution we �nd as follows6:

step 0: We have

H(t, x, u, p) =
[(
k1, k2)

(
x
u

)
− 1

2
(x, u)Q

(
x
u

)]
e−rt + p(m1, m2)

(
x
u

)
=
[
k1x− 1

2
q11x

2 + (k2 − q12x)u− 1
2
q22u

2
]
e−rt +m1px+m2pu

step 1: The optimal u∗ maximizes H, and can be written as û(t, x∗, p) where (from the
�rst-order condition for u)

û(t, x, p) =
(k2 − q12x)e−rt +m2p

q22

step 2: The di�erential equation for p is ṗ = (q11x− k1 + q12u)e
−rt −m1p to be evaluated

at optimum; that is, we insert x∗ for x and û(t, x∗, p) for u:

ṗ =
(
q11x

∗ − k1 + q12
(k2 − q12x∗)e−rt +m2p

q22

)
e−rt −m1p

Notice this is linear in (x∗, p) (we should reorder coe�cients).

Then we have the transversality conditions corresponding to whatever the terminal
conditions were for x.

5FMEA: you can safely skip 9.7 note 4 about when even Arrow fails. Not exam relevant.
6Indeed, we can assume U to be an interval as well, and concavity will still hold � but then the problem
becomes harder when u hits and endpoint.
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step 3: Inserting û in the di�erential equation for x∗, we �nd

ẋ∗ = m1x
∗ +m2û(t, x

∗, p) = m1x
∗ +m2

(k2 − q12x∗)e−rt +m2p

q22

Again, this is linear in (x∗, p).

The problem then reduces to solving a linear equation system, which unfortunately has

time-dependent coe�cients and therefore cannot be solved outright using our linear systems
cookbook.
The current-value formulation below resolves that!

Example A’, solvable particular example: Put r = 0, so no t-dependence, f = x −
u− x2 + xu− 1

2
u2. This is (strictly) concave in (x, u); then assume ẋ = x+ bu, u ∈ R, and

x(0) = 0, T = ln 2, x(ln 2) free. In class, I gave the following questions:

(a) State the conditions from the maximum principle. Are these also su�cient?

(b) Deduce a 2nd order di�erential equation for the optimal x∗.

(c) Solve this di�erential equation, and outline how to �nd the constants.

Answers:

(a) Put H(t, x, u, p) = x− u− x2 + xu− 1
2
u2 + p · (x + bu) (has no �t�). This is concave

wrt. (x, u), so the following conditions are both necessary and su�cient:

• Control: u∗ maximizes x− u− x2 + xu− 1
2
u2 + p · (x+ bu) over u ∈ R.

That is, u∗ = bp+ x∗ − 1.

• Adjoint: ṗ = 2x∗ − 1− u− p with p(ln 2) = 0.

In addition, the di�erential equation for x must hold.

(b) Insert for u∗ = bp+ x∗ − 1 in the di�erential equations:

ẋ∗ = x∗ + b · (bp+ x∗ − 1) = (1 + b)x∗ + b2p− b with x(0) = x0

ṗ = 2x∗ − p− (bp+ x∗) = x∗ − (1 + b)p with p(ln 2) = 0.

Now di�erentiate ẋ∗ to get ẍ∗ = (1 + b)ẋ∗ + b2ṗ. Insert for ṗ yields (1 + b)ẋ∗ + b2[x∗ −
(1 + b)p]. We need to eliminate −(1 + b)b2p using the di�erential equation for x∗:
−b2p = (1+b)x∗−b− ẋ∗, so that ẍ∗ = (1+b)ẋ∗+b2x∗+(1+b)2x∗−(1+b)b−(1+b)ẋ∗].
Cancel ẋ∗ and we are left with

ẍ∗ = (2b2 + 2b+ 1)x∗ − (1 + b)b.

(c) Let R =
√
2b2 + 2b+ 1 (which is real). With a particular solution (1 + b)b/R2, we

have general solution C1e
Rt + C2e

−Rt + (1 + b)b/R2, with C2 = −(1 + b)b/R2 − C1

by the initial condition, so x∗(t) = C1 · [eRt − e−Rt] + (1+b)b
R2 · [1 − e−Rt]. To �nd C1,

use the formula for p and put p(ln 2) = 0; we had −b2p = (1 + b)x∗ − b − ẋ∗, so
0 = (1 + b)x∗(ln 2)− b− ẋ∗(ln 2). Di�erentiate x∗, insert, solve for C1.
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Example A”, modified from class I intended to drop a term (namely −x2), and I'll do
it here. Let f = x− u+ xu− 1

2
u2, let still ẋ = x+ bu,with x(0) = 0, T = ln 2, x(ln 2) free

� but in this problem, assume u(t) = 0 or u(t) = 1.

Question (only the last posed in class):

• For what b ≥ 0 is it optimal to have u∗ ≡ 0?

• For what b ≥ 0 is it optimal to have u∗ ≡ 1?

Answer:

• Put H(x, u, p) = x − u + xu − 1
2
u2 + p · (x + bu). For u = 0 to maximize, we must

have H(x, 0, p) ≥ H(x, 1, p) (that leads to x+ bp ≤ 3/2), and for u = 1 to maximize,
we must have the reverse inequality. This is for each t. To have a constant u optimal:

� For u∗ ≡ 0 to be optimal, we must have x + bp − 3/2 ≤ 0 � to hold for all t,
which is the same as to say it holds for the t that maximizes the left-hand side:
maxt∈[0,ln 2]

(
x(t) + bp(t)− 3/2

)
≤ 0.

� For u∗ ≡ 1 to be optimal, we must have x+ bp− 3/2 ≥ 0 for all t. I.e., it must
hold for the t that makes the LHS minimal: mint∈[0,ln 2]

(
x(t)+ bp(t)− 3/2

)
≥ 0.

If the respective inequality holds, with the di�erential equations satis�ed (with initial
and transversality conditions), then H(x, 0, p) = x + px is concave in x, and Arrow
will apply. We therefore go on to solve the di�erential equations assuming u ≡ the
respective constant. Then we check against the inequality.

• With u ≡ 0, ẋ = x and thus x ≡ 0. For p, we have ṗ = −1 − p = which gives
(1 + p) = AeT−t with the constant A being 1 by the transversality condition; put
eT = 2, we get bp = b · (2e−t − 1), which should never exceed 3/2. p is decreasing, so
its maximum is for t = 0; bp(0) = b. That is:

u∗ ≡ 0 is optimal i� b ≤ 3

2

• With u ≡ 1, ẋ = x + b and thus x + b = (x0 + b)et = bet (convex in t). For p, we
have ṗ = −1 − u − p = −(p + 2) which gives (2 + p) = BeT−t with the constant
B being 2 by the transversality condition; put eT = 2, we get p = 4e−t − 2. So
x + bp = b ·

[
et + 4e−t − 3

]
= b · M(t) with M(t) = et + 4e−t − 3 is convex and

positive. Thus, we end up with the criterion b ≥ 3/2
mint∈[0,ln 2]M(t)

, which can be solved

out explicitly if we want to: Ṁ = et − 4e−t = e−t(e2t − 4) is negative on [0, ln 2), so
the minimum is for t = ln 2. That is:

u∗ ≡ 1 is optimal i� b ≥ 3/2

mint∈[0,ln 2]M(t)
=

3/2

M(ln 2)
=

3/2

2 + 4/2− 3
=

3

2

As you can see, it is always optimal to choose one of the constant controls. Which one
depends on b. If b = 3/2, we are indi�erent.
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Example B (H not concave wrt. (x, u), but Arrow’s condition applies) Not covered
in class! Let δ > 0 and K be constants. Consider the problem

max
u(t)∈[0,K]

∫ T

0

e−δtu2dt where ẋ = −u, x(0) = x0, x(T ) ≥ 0

Suppose the constant K be > x0/T (otherwise, we would have x(t) ≥ 0 automatically).
Notice that the Hamiltonian H(t, x, u, p) = e−δtu2 − pu is convex in u. That means (I)

that the maximizing u∗ is either 0 or K, and (II) we cannot use Mangasarian. But we can
use Arrow: since x does not enter H, then inserting for û (which does not depend on x,
as the maximization does not) we get no x in Ĥ. Considering Ĥ a function of x only, it is
constant, and that is concave. (Not strictly, but we do not need that.) So whatever we get
out of the following, will indeed be optimal. Let us work out the steps.

step 0: De�ne H(t, x, u, p) = e−δtu2 − pu.

step 1: The optimal u∗ maximizes H. By convexity, we must have either the endpoint 0 or
the endpoint K, and we just compare the two, e−δtK2 − pK vs. zero. We have

û =


K if K > peδt

0 if K < peδt

0 or K if K = peδt (the maximization cannot tell which one)

This condition can not determine û in the case peδt = K. If that happens at only
one point in time (or never), then it is not a problem, as changing an integrand at
a single point does not change any state. If we were to have p(t) = Ke−δt on an
entire positive interval, we would be in trouble (although, by su�cient conditions,
we could try to guess and verify!).

step 2: Because H does not depend on x, then ṗ = 0, so p is a constant P . By the
transversality condition, P ≥ 0 with equality if x∗(T ) > 0.

• Good news! The �?� case for û will not be an issue: there can only be at most
t for which K = Peδt. If there is one such, then we switch control (and we
switch from K to 0 ... exercise: why?).

step 3: We have ẋ = −K (if K > Peδt) or = 0 (if the reverse inequality holds). We need
to determine when we have what.

So now we have the conditions, and we can start to �nest� out what could happen.

• Could we have x(T ) > 0? Then we must have p(T ) = 0 hence P = 0. Then we would
always have K > Peδt and always u∗ = K. But then x∗(T ) = x0 − KT which by
assumption is ≤ 0. Contradiction! So x(T ) = 0.
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• Indeed, we cannot have u∗ ≡ K. Therefore, we must have K = Peδt
∗
for some

(necessarily unique) t∗ ∈ (0, T ). Then u∗ = K on (0, t∗) and 0 afterwards. Adjust
then t∗ so that we hit zero there: t∗ = x0/K.

So we must choose u∗ maximally until we hit zero, and keep x∗ constant at zero from then
on. By Arrow's condition, this is indeed the optimal solution.

Modified example B. Now drop the assumption that δ > 0. The case δ < 0 will not add
much insight � we will push the u∗ = K period to the end instead. But suppose now δ = 0,
and let us see what happens.

step 0: De�ne H(t, x, u, p) = u2 − pu.

step 1: The optimal u∗ maximizes H. Again, we have endpoint solution:

û =


K if K > p

0 if K < p

(0 or K if K = p; the maximization cannot tell which one)

step 2: Again, p is a constant P ≥ 0 (equal to zero if x∗(T ) > 0.)

step 3: The di�erential equation for the state must hold.

Again we get a contradiction if we assume x(T ) > 0. So x(T ) = 0. In particular, that means
we cannot have u∗ ≡ 0. Therefore, we must have K ≥ P . And we cannot have u∗ ≡ K, as
that yields x∗(T ) < 0. So K ≤ P .

• With K = P , the necessary conditions cannot tell us whether to use u∗ = 0 or
u∗ = K.

• But we know that we must have u∗ = K for precisely long enough to end up at zero.
The necessary conditions cannot tell when to run at full throttle.

• Actually, it does not matter. No matter when, we would get the same performance
Kx0. But that is maybe not so easy to see, was it?

• Well let us argue as follows: in the case δ > 0, we had u∗ = K up to t∗ = x0/K. Let
us just make the guess that this is optimal.

� It does satisfy all the conditions from the maximum principle!

� By the Arrow condition, it is optimal.

(It just isn't uniquely optimal. In fact, all the other �u∗ = K for a period totalling
x0/K in length� will be optimal � and Arrow's condition will verify that!)

Even more modified example B. Restrict u(t) to being either zero or K. We know
already that we have optimal solutions for the previous modi�cation, with that property,
so they must be optimal here as well. But take note that Arrow's condition works even
then U is not a convex set, and could be used to verify optimality!
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Current-value formulation. You will not be asked directly to know it (it has been given
at the exam, but then with a hint on what to do to get it) � but it could be very helpful,
especially in the following case: Suppose running utility has exponential discounting and
there is no other �explicit time-dependence� (and in particular so in in�nite horizon,
which is not curriculum. Here is what happens: Suppose that g(t, x, u) does not depend on
t directly, and that f(t, x, u) = e−rtf cv(x, u), the �cv� for �current-value�. De�ne λ = ertp.
Then H(t, x, u, p) = e−rt

[
f cv + pertg

]
which equals e−rtHcv(x, u, λ) where Hcv(x, u, λ) =

f cv(x, u)+λg(x, u) is called the current-value Hamiltonian. (There is literature where that
is just called �Hamiltonian� as well.) We have ṗ = d

dt
λe−rt = [λ̇ − rλ]e−rt which equals

−e−rt ∂Hcv

∂x
, that yields the second of the following conditions:

• The optimal u∗ maximizes Hcv. If unique, it will be given as a function ûcv(x, λ).

• λ satis�es λ̇− rλ = −∂Hcv

∂x
with the same transversality condition for λ as for p.

• Su�cient conditions: as before! Because Hcv will be concave i� H is, Mangasarian
and/or Arrow can be checked with Hcv and λ in place of H and p.

If there is no t-dependence in f cv nor g, there will be none in the resulting di�.eq. system
(�autonomous�). The following two headlines highlight the advantages:

Phase planes. If the current-value formulation yields an autonomous system, you can
draw a phase plane. That could be helpful to extract properties. See example given in class.

«Current-value Example A» linear autonomous system solvable by hand!

step 0: Current-value Hamiltonian

Hcv(x, u, λ) = k1x− 1
2
q11x

2 + (k2 − q12x)u− 1
2
q22u

2 +m1λx+m2λu

step 1: The optimal u∗ can be written as
k2 − q12x+m2λ

q22

step 2: We get the di�erential equation λ̇− rλ = q11x− k1 + q12u−m1λ to be evaluated
at optimum:

λ̇− rλ = q11x
∗ − k1 + q12

k2 − q12x∗ +m2λ

q22
−m1λ

Linear in (x∗, λ), and now the coe�cients are constant.

step 3: Inserting û in the di�erential equation for x∗, we �nd

ẋ∗ = m1x
∗ +m2

k2 − q12x∗ +m2λ

q22

Linear in (x∗, λ), and now the coe�cients are constant.

Because of the constant coe�cients, we can solve this system completely. Align the inte-
gration constants to x(t0) = x0 and the terminal/transversality conditions, and we have
solved the maximization problem.
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Sensitivity. The optimal value V depends on (t0, x0, t1, x1) although no �x1� if x(t1) is
free. With exception for the latter, and to the level of precision of this course, we have the
following sensitivity properties:

• ∂V
∂x0

= p(t0).

• ∂V
∂x1

= −p(t1) except in the free-end case. Note that the �x1� variable is a constraint

you have to ful�l, so the interpretation is that p(t1) is the marginal loss of tightening
it by requiring you to leave one more unit at the table in the end.

• ∂V
∂t1

= H(t1, x
∗
1, u
∗(t1), p(t1)) is the marginal value of having one more time unit in the

end. That means, that if you were actually allowed to choose when to stop, then the
�rst-order condition would be H = 0 at the �nal time. (But for optimal stopping,
the su�cient conditions presented herein are no longer valid!)

• ∂V
∂t0

= −H(t0, x0, u
∗(t0), p(t0)). The minus sign because increasing t0 gives you one

unit less of time.

Note that −p(t1) is the t0-present value, and similar for H(t1, x
∗
1, u
∗(t1), p(t1)). If you use

current-value formulation, you have to discount to get t0-present value.

Example C (Covered in class.) Let α > r > 0 be constants, and consider the problem

V = max
u(t)∈{0,1,2}

∫ T

0

e−rT (lnx− u) dt, ẋ = αx+ u2, x(0) = x0 (> 0), x(T ) free

Questions:

(a) State the necessary conditions from the maximum principle. Are they also su�cient?

(b) Prove that for u∗(t) = 0 for all large enough t < T (i.e., there exists some nonempty
interval (t∗, T ] on which an optimal control must be zero).

(c) Prove that when T > 0 is small enough, then u∗ ≡ 0 is optimal. (First, explain why
this does not follow directly from part (b)!)

(d) If T increases by 1 percent, approximately how much does V change? Express the
answer in terms of T and x∗(T ).

The following will use the current-value formulation, as was done in class.

(a) With Hamiltonian Hcv(x, u, λ) = lnx− u+ λ · (αx+ u2), we get the conditions:

• The optimal u∗ maximizes λu2 − u, that is, insert 0, 1 and 2 for u and compare.

• We have λ̇ = rλ− αλ− 1/x with λ(T ) = 0.

In addition, the di�erential equation for x must hold, with x(0) = x0. By Arrow, these
conditions are su�cient, as x 7→ Hcv = lnx+λx+[something constant in x] is concave.
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(b) 0 must be chosen if it makes λu2 − u strictly larger than what u = 1 or u = 2 can do.
u = 1 yields λ − 1, u = 2 yields 2λ − 4, so we must choose u = 0 if λ < 1/2. Since
λ(T ) = 0, then (by continuity) we have λ(t) < 1/2 su�ciently near T .

(c) As a general statement, �su�ciently near T� does not rule out that t∗ is a function of
T , for example T/2; shrinking T won't make it hold at zero. So we have a job to do:
Put u = 0 and test it; if that leads to a λ which is < 1/2 for all t ∈ (0, T ), we are done.

Arguably simplest7: put u = 0, get x = x0e
αt, solve λ̇+(α− r)λ = −e−αt/x0 explicitly

by the formula, that yields λ(t) = 1
(2α−r)x0 e

−αt − Ce(α−r)(t−T ), �t C = 1
(2α−r)x0 e

−αT

(that yields λ(T ) = 0). λ is strictly decreasing, and so it su�ces that 1
2
≥ λ(0). Put

t = 0 and observe that λ(0) → 0 when T ↘ 0, and thus it becomes smaller than 1/2
then T is su�ciently small.

(d) The derivative is H at T ; that is, e−rT 7→ Hcv(x∗(T ), u∗(T ), λ(T )). We know that
λ(T ) = 0, and we have shown that u∗(T ) = 0, so we are left with e−rT lnx∗(T ). To get
a one percent increase: T

100
e−rT lnx∗(T ).

Infinite horizon conditions are not curriculum (but «limit of long finite horizon»
is). Conditions for in�nite horizon are not curriculum. At worst, you could be asked
what happens when t1 becomes large. (That is, limit of �nite horizon problems.)
That means that phase planes for in�nite horizon problems are not curriculum per se.

But phase planes for di�erential equation systems are curriculum per se, and could also
be helpful for solving the �nite-time optimal control problems you can be asked to handle.
Examples were given in lectures.

Variable final time to be optimized: Barely mentioned in 2019: what if you can choose
to optimize the horizon t1? If the optimal t1 is > t0 (so that it is interior), a FOC for
optimal t1 is

∂V
∂t1

= 0, that is, H(t1, x
∗
1, u
∗(t1), p(t1)) = 0. This and the maximum principle

form necessary conditions.
But a warning is due: su�cient conditions do not generalize nicely, they become way

harder. Curious? See Seierstad and Sydsæter's 1987 textbook on optimal control theory.

Scrap values are not curriculum. Not too hard, given the sensitivity results, but nope.

Existence/uniqueness of optimal control: no general results on curriculum. Do
not worry over whether there is any �extreme value theorem�; The only �exam relevant�
concerning uniqueness is if you can show that only one control satis�es necessary conditions.
The only �exam relevant� cases concerning existence are (+) if you have found a solution
by su�cient conditions, or (−) when it is clear that no solution exists; the latter is mainly
for calculus of variations, when conditions are the same for min and max and typically at
most one exists.

7Alternative: compare λ with an autonomous di�.eq. ...
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