ECON4140 2019 (draft): diff.eq. (systems).

Draft ~» could be revised, especially when it comes to what is exam relevant.

FMEA 6.1-6.3 (Norw.: MA2 2.1-2.3) You must know that if you are given two non-
proportional solutions u; and us of a homogeneous linear 2nd order diff.eq., you obtain the
general solution as an arbitrary linear combination Ciu; + Cous. (FMEA thm 6.2.1, MA2
setning 2.2.1 jf. 2.2.2). In the non-homoegeneous case, you need the general solution of the
corresponding homogeneous, plus a particular solution u* of the inhomogeneous.

e Non-constant coefficients: not in itself curriculum: you won’t get that equation, and
“solve!”. But given how to find u;, wus, u*, you shall be able to apply the general
theory to come up with the answer Ciu; + Cous + u*.

e In particular, this goes for Euler’s differential equation (a subsection in FMEA; MA2
avsnitt 2.5). See the seminar problem and the remark given.

Constant coefficients (but variable right-hand side f(¢)): You shall be able to solve
the homogeneous completely, and the types of RHS’s given. In particular: if the RHS is
t™, then you might need lower-order terms than m; and, if the RHS is € sin(gt), you need
e’ (K cos(qt) + Lsin(qt)), etc. Note also what happens if f(¢) is a particular solution of
the corresponding homogeneous equation.

Constant coeff’s only: Stability of linear 2nd order diff.eq’s (FMEA section 6.4,
MA2 avsnitt 2.6) — and systems in R? (FMEA sections 6.6-6.7, MA2 avsnitt 2.7—
2.8). For 2nd order diff.eq’s & + ad + bz = 0: !

e Globally asymptotically stable <= a > 0 & b > 0.
e If a < 0 and/or b < 0: unstable.

e If b > 0 = a: Undampened oscillations A cos(tv/b) + Bsin(tv/b). Stable, but not
asymptotically so (sometimes referred to as «neutrally stable») in the literature.

o If b=0=a, i.e., the equation & = 0: The affine function C' + Dt, unstable.

T

Systems (§) = A(y) in R? (see however handwritten attachment):

e Reduced to 2nd order diff.eq.’s, with characteristic roots = the eigenvalues of A, that

is: Ay = ZA L \/(%)2 — det A. As with 2nd orders: if these are not real numbers,

you put o = =2 and 8 = \/det A — (22)2 and use the formula. (See remark at

the end concerning complex numbers.)

!Norwegian: Enkelte gamle utgaver av MA2 har en trykkfeil om det fglgende. 2013-versjonen er riktig.



e In particular, you are expected to tell whether an unstable system is a saddle point:
when the eigenvalues are real and of opposite sign (< det A < 0). For saddle
points you shall know that the convergent particular solutions have the slope of the
eigenvector v associated to the negative eigenvalue. (Slope y(t)/x(t) = vy/v; then.)

The “simplest” linear systems 7 = AZ inR": If A (assumed constant!) has n distinct
real eigenvalues Ay, . .., A\, with eigenvectors v\, ..., v(® then: C;veMt 4. .. 4O, vMernt,
These C; can be fit to any given initial state; if Z(0) is given, then = V~17(0), where V
has the eigenvalues as columns.

(Also true, but not curriculum relevant: replace “real” by “complex”.)

Nonlinear systems. (No global asymptotic stability, so NOT FMEA Theorem 6.8.2.)

e Phase plane analysis: exam ambition is to «sketch» a phase diagram, so that things
look qualitiatively right: trajectories should be vertical /horizontal across the respec-
tive nullclines, up/down and left /right directions should be correct).

e (lassification of equilibrium points through eigenvalues of the Jacobian. Note the
cases where the test is inconclusive: if the largest eigenvalue is zero, we cannot tell if
stable or not; if Ay > Ay = 0 it is unstable, but we cannot tell whether it is a saddle
point.

— In particular, concerning saddle points: The particular solutions that converge to
the saddle point, will in the limit converge like the eigenvector v corresponding
to the negative eigenvalue. More precisely: If the saddle point is (z.,y.), then

limy sy oo 38:2 = vy /vy (except slope — vertical if v; = 0).

e Not curriculum: Lyapunov functions and Olech’s theorem (part of FMEA sec. 6.8;
MAZ2 avsnitt 2.12). One seminar problem is taken from there, but that problem only
asks you for local classification, which s curriculum.

Complex numbers: you can do without! At the exam you need nothing. In teaching,
you will have to deal with the term «real part». The real part of a real number is the
number itself, but if the formula for a quadratic yields, e.g., 7 = 7 4+ /—4, then the real
part is 7. (Regardless of whether «+» is + or —.) Take note that if the quadratic function
has no zeroes, then this real part is the stationary point.

Similar goes for a 2 x 2 matrix A with characteristic equation A\> — X tr A + det A = 0:

Formula yields A + \/(%)2 —det A. Real part = \ if real; otherwise, 4.
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