ECON4140 2019 (draft): diff.eq. (systems).

Draft \rightarrow could be revised, especially when it comes to what is exam relevant.

FMEA 6.1–6.3 (Norw.: MA2 2.1–2.3) You must know that if you are given two nonproportional solutions u_1 and u_2 of a homogeneous linear 2nd order diff.eq., you obtain the general solution as an arbitrary linear combination $C_1u_1 + C_2u_2$. (FMEA thm 6.2.1, MA2 setning 2.2.1 jf. 2.2.2). In the non-homoegeneous case, you need the general solution of the corresponding homogeneous, plus a particular solution u^* of the inhomogeneous.

- Non-constant coefficients: not in itself curriculum: you won't get that equation, and "solve!". But given how to find u_1 , u_2 , u^* , you shall be able to apply the general theory to come up with the answer $C_1u_1 + C_2u_2 + u^*$.
- In particular, this goes for Euler's differential equation (a subsection in FMEA; MA2 avsnitt 2.5). See the seminar problem and the remark given.

Constant coefficients (but variable right-hand side f(t)): You shall be able to solve the homogeneous completely, and the types of RHS's given. In particular: if the RHS is t^m , then you might need lower-order terms than m; and, if the RHS is $e^{\delta t} \sin(qt)$, you need $e^{\delta t} (K \cos(qt) + L \sin(qt))$, etc. Note also what happens if f(t) is a particular solution of the corresponding homogeneous equation.

Constant coeff's only: Stability of linear 2nd order diff.eq's (FMEA section 6.4, MA2 avsnitt 2.6) – and systems in \mathbb{R}^2 (FMEA sections 6.6–6.7, MA2 avsnitt 2.7–2.8). For 2nd order diff.eq's $\ddot{x} + a\dot{x} + bx = 0$: ¹

- Globally asymptotically stable $\iff a > 0 \& b > 0$.
- If a < 0 and/or b < 0: unstable.
- If b > 0 = a: Undampened oscillations $A\cos(t\sqrt{b}) + B\sin(t\sqrt{b})$. Stable, but not asymptotically so (sometimes referred to as «neutrally stable») in the literature.
- If b = 0 = a, i.e., the equation $\ddot{x} = 0$: The affine function C + Dt, unstable.

Systems $\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \mathbf{A} \begin{pmatrix} x \\ y \end{pmatrix}$ in \mathbb{R}^2 (see however handwritten attachment):

• Reduced to 2nd order diff.eq.'s, with characteristic roots = the eigenvalues of **A**, that is: $\lambda_{\pm} = \frac{\operatorname{tr} \mathbf{A}}{2} \pm \sqrt{(\frac{\operatorname{tr} \mathbf{A}}{2})^2 - \operatorname{det} \mathbf{A}}$. As with 2nd orders: if these are not real numbers, you put $\alpha = \frac{\operatorname{tr} \mathbf{A}}{2}$ and $\beta = \sqrt{\operatorname{det} \mathbf{A} - (\frac{\operatorname{tr} \mathbf{A}}{2})^2}$ and use the formula. (See remark at the end concerning complex numbers.)

 $^{^1 \}rm Norwegian:$ Enkelte gamle utgaver av MA2 har en trykkfeil om det følgende. 2013-versjonen er riktig.

• In particular, you are expected to tell whether an unstable system is a saddle point: when the eigenvalues are real and of opposite sign ($\Leftrightarrow \det \mathbf{A} < 0$). For saddle points you shall know that the convergent particular solutions have the slope of the eigenvector \mathbf{v} associated to the negative eigenvalue. (Slope $y(t)/x(t) = v_2/v_1$ then.)

The "simplest" linear systems $\dot{\vec{x}} = \mathbf{A}\vec{x}$ in \mathbb{R}^n : If **A** (assumed constant!) has *n* distinct real eigenvalues $\lambda_1, \ldots, \lambda_n$ with eigenvectors $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$ then: $C_1\mathbf{v}^{(1)}e^{\lambda_1t}+\cdots+C_n\mathbf{v}^{(n)}e^{\lambda_nt}$. These C_i can be fit to any given initial state; if $\vec{x}(0)$ is given, then $\vec{C} = \mathbf{V}^{-1}\vec{x}(0)$, where **V** has the eigenvalues as columns.

(Also true, but not curriculum relevant: replace "real" by "complex".)

Nonlinear systems. (No global asymptotic stability, so NOT FMEA Theorem 6.8.2.)

- Phase plane analysis: exam ambition is to «sketch» a phase diagram, so that things look qualitatively right: trajectories should be vertical/horizontal across the respective nullclines, up/down and left/right directions should be correct).
- Classification of equilibrium points through eigenvalues of the Jacobian. Note the cases where the test is inconclusive: if the largest eigenvalue is zero, we cannot tell if stable or not; if $\lambda_2 > \lambda_1 = 0$ it is unstable, but we cannot tell whether it is a saddle point.
 - In particular, concerning saddle points: The particular solutions that converge to the saddle point, will in the limit converge like the eigenvector **v** corresponding to the negative eigenvalue. More precisely: If the saddle point is (x_*, y_*) , then $\lim_{t\to+\infty} \frac{y(t)-y_*}{x(t)-x_*} = v_2/v_1$ (except slope \rightarrow vertical if $v_1 = 0$).
- Not curriculum: Lyapunov functions and Olech's theorem (part of FMEA sec. 6.8; MA2 avsnitt 2.12). One seminar problem is taken from there, but that problem only asks you for *local* classification, which *is* curriculum.

Complex numbers: you can do without! At the exam you need nothing. In teaching, you will have to deal with the term «real part». The real part of a real number is the number itself, but if the formula for a quadratic yields, e.g., $r = 7 \pm \sqrt{-4}$, then the real part is 7. (Regardless of whether $\ll \gg$ is + or -.) Take note that if the quadratic function has no zeroes, then this real part is the stationary point.

Similar goes for a 2 × 2 matrix **A** with characteristic equation $\lambda^2 - \lambda \operatorname{tr} \mathbf{A} + \det \mathbf{A} = 0$: Formula yields $\frac{\operatorname{tr} \mathbf{A}}{2} \pm \sqrt{(\frac{\operatorname{tr} \mathbf{A}}{2})^2 - \det \mathbf{A}}$. Real part = λ if real; otherwise, $\frac{\operatorname{tr} \mathbf{A}}{2}$.

$$\mathfrak{R}^{2}, \qquad \begin{array}{c} \lambda^{2} - \lambda \lambda \overline{A} + clet \overline{A} = 0 \\ \end{array}$$

· Case det Ā <0: p(0) <0 p(2) <0 p(2) <0 let Ā Opposite - sign real enguvalues.

(Unstable) Saddle point.

R' cont'd, cases with det # > 0: p(0) = det 7 70 $P'(o) = -tr \bar{A}$

tr A >0 : Ret T det i Re D Not real X. → Re & = the symmetry - Both eigenvalues real axis = the manum & positive. Unstable. point for p(2) C"Source") $=\frac{h}{4}$ -> Also valuel for the Re X>0 -Þ double - argunalue case => unstable, outuard $\lambda_1 = \lambda_2 > 0$ Spiraling

Also value for $\lambda_i = \lambda_2 < 0$

No real X. Re X < 0. Stable, spiral juliards

For the following cases, we can classify a linear system $(x) = \overline{A}(x) \mod Completely, but$ the Jacobian A= J(x,y*) of a noulinear system can at most give partial information . Case $\lambda_1 < \lambda_2 = 0 = \text{det } \overline{A}$ Linear system: stable, but not asymptotically · Nadincar: <u>Cannot decide</u> stability, but either sink or saddle det $\overline{A} > 0 = h - \overline{A}$, Cases $\lambda_1 = \lambda_2 = 0$ = det $\overline{A} = +-\overline{A}$ Re $\lambda = 0$, no real λ / Linear : ellipses Linear: unstable ("C+De") (Stable, but not asymptotically) Nonlinear - could be anything! Voulinear: annot decide stability, but: orbiting spirals or ellipses Case $O = \lambda_1 < \lambda_2 = t - A$ $O = O = \lambda_1 < \lambda_2 = t - A$ $O = O = \lambda_1 < \lambda_2 = t - A$ $O = O = \lambda_1 < \lambda_2 = t - A$ Lunear: Nonlorean : Cannot tell source/ Sadelle