ECON4140 2019 (draft): diff.eq. (systems).

Draft \rightsquigarrow could be revised, especially when it comes to what is exam relevant.
FMEA 6.1-6.3 (Norw.: MA2 2.1-2.3) You must know that if you are given two nonproportional solutions u_{1} and u_{2} of a homogeneous linear $2 n d$ order diff.eq., you obtain the general solution as an arbitrary linear combination $C_{1} u_{1}+C_{2} u_{2}$. (FMEA thm 6.2.1, MA2 setning 2.2 .1 jf .2 .2 .2). In the non-homoegeneous case, you need the general solution of the corresponding homogeneous, plus a particular solution u^{*} of the inhomogeneous.

- Non-constant coefficients: not in itself curriculum: you won't get that equation, and "solve!". But given how to find u_{1}, u_{2}, u^{*}, you shall be able to apply the general theory to come up with the answer $C_{1} u_{1}+C_{2} u_{2}+u^{*}$.
- In particular, this goes for Euler's differential equation (a subsection in FMEA; MA2 avsnitt 2.5). See the seminar problem and the remark given.

Constant coefficients (but variable right-hand side $f(t)$): You shall be able to solve the homogeneous completely, and the types of RHS's given. In particular: if the RHS is t^{m}, then you might need lower-order terms than m; and, if the RHS is $e^{\delta t} \sin (q t)$, you need $e^{\delta t}(K \cos (q t)+L \sin (q t))$, etc. Note also what happens if $f(t)$ is a particular solution of the corresponding homogeneous equation.

Constant coeff's only: Stability of linear 2nd order diff.eq's (FMEA section 6.4, MA2 avsnitt 2.6) - and systems in \mathbb{R}^{2} (FMEA sections 6.6-6.7, MA2 avsnitt 2.7-

2.8). For 2 nd order diff.eq's $\ddot{x}+a \dot{x}+b x=0:{ }^{1}$

- Globally asymptotically stable $\Longleftrightarrow a>0 \& b>0$.
- If $a<0$ and/or $b<0$: unstable.
- If $b>0=a$: Undampened oscillations $A \cos (t \sqrt{b})+B \sin (t \sqrt{b})$. Stable, but not asymptotically so (sometimes referred to as «neutrally stable») in the literature.
- If $b=0=a$, i.e., the equation $\ddot{x}=0$: The affine function $C+D t$, unstable.

Systems $\binom{\dot{x}}{\dot{y}}=\mathbf{A}\binom{x}{y}$ in \mathbb{R}^{2} (see however handwritten attachment):

- Reduced to 2nd order diff.eq.'s, with characteristic roots $=$ the eigenvalues of \mathbf{A}, that is: $\lambda_{ \pm}=\frac{\operatorname{tr} \mathbf{A}}{2} \pm \sqrt{\left(\frac{\operatorname{tr} \mathbf{A}}{2}\right)^{2}-\operatorname{det} \mathbf{A}}$. As with 2 nd orders: if these are not real numbers, you put $\alpha=\frac{\operatorname{tr} \mathbf{A}}{2}$ and $\beta=\sqrt{\operatorname{det} \mathbf{A}-\left(\frac{\operatorname{tr} \mathbf{A}}{2}\right)^{2}}$ and use the formula. (See remark at the end concerning complex numbers.)

[^0]- In particular, you are expected to tell whether an unstable system is a saddle point: when the eigenvalues are real and of opposite $\operatorname{sign}(\Leftrightarrow \operatorname{det} \mathbf{A}<0)$. For saddle points you shall know that the convergent particular solutions have the slope of the eigenvector \mathbf{v} associated to the negative eigenvalue. (Slope $y(t) / x(t)=v_{2} / v_{1}$ then.)

The "simplest" linear systems $\dot{\vec{x}}=\mathbf{A} \vec{x}$ in \mathbb{R}^{n} : If \mathbf{A} (assumed constant!) has n distinct real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ with eigenvectors $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$ then: $C_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t}+\cdots+C_{n} \mathbf{v}^{(n)} e^{\lambda_{n} t}$. These C_{i} can be fit to any given initial state; if $\vec{x}(0)$ is given, then $\vec{C}=\mathbf{V}^{-1} \vec{x}(0)$, where \mathbf{V} has the eigenvalues as columns.
(Also true, but not curriculum relevant: replace "real" by "complex".)

Nonlinear systems. (No global asymptotic stability, so NOT FMEA Theorem 6.8.2.)

- Phase plane analysis: exam ambition is to «sketch» a phase diagram, so that things look qualitiatively right: trajectories should be vertical/horizontal across the respective nullclines, up/down and left/right directions should be correct).
- Classification of equilibrium points through eigenvalues of the Jacobian. Note the cases where the test is inconclusive: if the largest eigenvalue is zero, we cannot tell if stable or not; if $\lambda_{2}>\lambda_{1}=0$ it is unstable, but we cannot tell whether it is a saddle point.
- In particular, concerning saddle points: The particular solutions that converge to the saddle point, will in the limit converge like the eigenvector \mathbf{v} corresponding to the negative eigenvalue. More precisely: If the saddle point is $\left(x_{*}, y_{*}\right)$, then $\lim _{t \rightarrow+\infty} \frac{y(t)-y_{*}}{x(t)-x_{*}}=v_{2} / v_{1}$ (except slope \rightarrow vertical if $v_{1}=0$).
- Not curriculum: Lyapunov functions and Olech's theorem (part of FMEA sec. 6.8; MA2 avsnitt 2.12). One seminar problem is taken from there, but that problem only asks you for local classification, which is curriculum.

Complex numbers: you can do without! At the exam you need nothing. In teaching, you will have to deal with the term «real part». The real part of a real number is the number itself, but if the formula for a quadratic yields, e.g., $r=7 \pm \sqrt{-4}$, then the real part is 7. (Regardless of whether «士» is + or -.) Take note that if the quadratic function has no zeroes, then this real part is the stationary point.
Similar goes for a 2×2 matrix \mathbf{A} with characteristic equation $\lambda^{2}-\lambda \operatorname{tr} \mathbf{A}+\operatorname{det} \mathbf{A}=0$: Formula yields $\frac{\operatorname{tr} \mathbf{A}}{2} \pm \sqrt{\left(\frac{\operatorname{tr} \mathbf{A}}{2}\right)^{2}-\operatorname{det} \mathbf{A}}$. Real part $=\lambda$ if real; otherwise, $\frac{\operatorname{tr} \mathbf{A}}{2}$.
"Don-borderkine" cases $\max _{k} \operatorname{Re} \lambda_{k} \neq 0$

* Generally, \mathbb{R}^{n}

$$
\max _{k}^{\operatorname{mall} y} \operatorname{Re} \mathbb{R}_{k}<0 \Rightarrow\left\{\begin{array}{l}
\text { local asympt, stability } \\
\text { global if the system } \\
\text { is linear. }
\end{array}\right.
$$

$\max _{k} \operatorname{Re} \lambda_{k}>0 \Rightarrow$ unstable
$\otimes \mathbb{R}^{2}, \quad \underbrace{\lambda^{2}-\lambda 2-\bar{A}+\operatorname{det} \bar{A}}_{P(\lambda)}=0$

- Case $\operatorname{det} \bar{A}<0: \quad \rho(0)<0$

Opposite - sign real einguralnes. (Unstable) saddle point.
\mathbb{R}^{2} cont $^{\prime} d$,
cases with et $\pi>0$:

$$
\begin{aligned}
& p(0)=\operatorname{det} \bar{A}>0 \\
& P^{\prime}(0)=-\operatorname{tr} \bar{A}
\end{aligned}
$$

- $\operatorname{tr} \bar{A}>0$:

\rightarrow Both eigenvalues real \& positive. Unstable. ("Source")
\rightarrow Also value for the double-azgnvalue case

$$
\lambda_{1}=\lambda_{2}>0
$$

\rightarrow No l real λ.
$\rightarrow \operatorname{Re} \lambda=$ the symmetry axis = the minimum pout $\beta-\rho(\lambda)$ $=\frac{\operatorname{tr}-\overline{4}}{2}$.
$\rightarrow \operatorname{Re} \lambda>0$
\Rightarrow unstable, outroars spinating

- $\operatorname{tr} \bar{A}<0$: Mirror about vertical axis

Stable. ("Sink".)
Also valid for $\lambda_{1}=\lambda_{2}<0$

No real λ.
$\operatorname{Re} \lambda<0$.
Stable, spiral inwards

For the follouring cases, we can classify a hear system $\binom{\dot{x}}{\dot{j}}=\bar{A}\binom{x}{y}$ completely, but the Jacobian $\bar{A}=J\left(x^{*}, y^{*}\right)$ of a nonlinear system can at most give partial information

- Case $\lambda_{1}<\lambda_{2}=0=\operatorname{det} \bar{A}$

- Linear system: stable' but not - Noulincar : Cannot decide stability, but either sink or saddle
- Cases $\lambda_{1}=\lambda_{2}=0$

$$
=\operatorname{det} \bar{A}=\operatorname{tr} \bar{T}
$$

Linear: unstable
(" $C+D t$ ")
$\operatorname{det} \bar{A}>0=\operatorname{L}, \bar{A}$, $\operatorname{Re} \lambda=0$, no real λ

Linear : ellipses.
(stable, but not') any mptotradly

Donlonear: could be anything; Nonlinear: annot decicle stability
but: orbiting spirals on ellipses

- Case $0=\lambda_{1}<\lambda_{2}=$ tr \bar{A}
$0=\operatorname{det} \bar{A}$
Unstable.

Linear:
Nonlinear: cannot tell source/ saddle

[^0]: ${ }^{1}$ Norwegian: Enkelte gamle utgaver av MA2 har en trykkfeil om det følgende. 2013-versjonen er riktig.

