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T-test for two groups
In seminar 1 we showed the stata command for ttest:

• The ttest command is used when we want to compare two sample
means

• The groups consists of n1 and n2 randomly chosen entities and the
mean and variance can be computed for each group as normal.

• Two types of tests:
• Unpaired: We have two separate sets of independent and identically

distributed samples. T-test compares the means of the two groups of
data to tests whether the two groups are statistically different.

• Paired: A sample of matched pairs of similar units or one group of
units that has been tested twice. The two measurements generally are
before and after a treatment intervention. The test is calculated based
on the difference between the two sets of paired observations.

• Both assume that the analyzed data is from a normal distribution.
• The unpaired test automatically assume that the variance of the two

groups are approximately equal.
• A test can be performed assuming unequal variances. If the variances

are equal it is not as powerful as the pooled variance test.
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Hypothesis testing in MLRM
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Testing a single coefficient

• Instead of testing β1 we can test any βj of the regression.

H0 : βj = βj ,0 vs. H1 : βj 6= βj ,0

• A two sided test that the true coefficient βj on the j th regressor takes
on some specific value βj ,0.

• As in the SLRM you perform hypothesis testing of a single coefficient
in three steps:

• Compute the standard error of βj
• Compute the t-statistic
• Compute the p-value or find the critical t-value.

• Stata automatically reports the t-statistic and the p-value for
two-sided test of the null hypothesis βj = 0.
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Wage and education example

ˆwage = −3.39
(0.77)

+ 0.64educ
(0.05)

+ 0.07exp
(0.01)

tact =
0.64− 0

0.05
= 12.8

With 526 observations n=526. The critical value for the 5% significance
level can be found either in the t-table or the Z-table as n is large.
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Finding critical values
Critical Values for Two-Sided and One-Sided Tests Using the Student t Distribution 

Significance Level 

Degrees 20% (2-Sided) 10% (2-Sided) S% (2-Sided) 2% (2-Sided) 1 % (2-Sided) 

of Freedom 10% (l -Sided) S% (l-Sided) 2.S% (l-Sided) 1% (l-Sided) O.S% (l-Sided) 

1 3.08 6.31 12.71 31.82 63.66 

2 1.89 2.92 4.30 6.96 9.92 

3 1.64 2.35 3.18 4.54 5.84 

4 1.53 2.13 2.78 3.75 4.60 

5 1.48 2.02 2.57 3.36 4.03 

6 1.44 1.94 2.45 3.14 3.71 

7 1.41 1.89 2.36 3.00 3.50 

8 1.40 1.86 2.31 2.90 3.36 

9 1.38 1.83 2.26 2.82 3.25 

10 1.37 1.81 2.23 2.76 3.17 

11 1.36 1.80 2.20 2.72 3.11 

12 1.36 1.78 2.18 2.68 3.05 

13 1.35 1.77 2.16 2.65 3.01 

14 1.35 1.76 2.14 2.62 2.98 

15 1.34 1.75 2.13 2.60 2.95 

16 1.34 1.75 2.12 2.58 2.92 

17 1.33 1.74 2.11 2.57 2.90 

18 1.33 1.73 2.10 2.55 2.88 

19 1.33 1.73 2.09 2.54 2.86 

20 1.33 1.72 2.09 2.53 2.85 

21 1.32 1.72 2.08 2.52 2.83 

22 1.32 1.72 2.07 2.51 2.82 

23 1.32 1.71 2.07 2.50 2.81 

24 1.32 1.71 2.06 2.49 2.80 

25 1.32 1.71 2.06 2.49 2.79 

26 1.32 1.71 2.06 2.48 2.78 

27 1.31 1.70 2.05 2.47 2.77 

28 1.31 1.70 2.05 2.47 2.76 

29 1.31 1.70 2.05 2.46 2.76 

30 1.31 1.70"' 2.04 2.46 2.75 

60 1.30 1.67 2.00 2.39 2.66 

90 1.29 1.66 1.99 2.37 2.63 

120 1.29 1.66 1.98 2.36 2.62 
00 1.28 1.64 1.96 2.33 2.58 

Values are shown for the critical values for two-sided ( "" ) and one-sided (» alternative hypotheses. The critical value for the 
one-sided «) test is the negative of the one-sided (» critical value shown in the table. For example, 2.13 is the critical value for a 
two-sided test with a significance level of 5% using the Student t distribution with 15 degrees of freedom. 
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Finding p-value

Table entry

Table entry for z is the area under the standard normal curve
to the left of z.

Standard Normal Probabilities

z

z .00

–3.4
–3.3
–3.2
–3.1
–3.0
–2.9
–2.8
–2.7
–2.6
–2.5
–2.4
–2.3
–2.2
–2.1
–2.0
–1.9
–1.8
–1.7
–1.6
–1.5
–1.4
–1.3
–1.2
–1.1
–1.0
–0.9
–0.8
–0.7
–0.6
–0.5
–0.4
–0.3
–0.2
–0.1
–0.0

.0003

.0005

.0007

.0010

.0013

.0019

.0026

.0035

.0047

.0062

.0082

.0107

.0139

.0179

.0228

.0287

.0359

.0446

.0548

.0668

.0808

.0968

.1151

.1357

.1587

.1841

.2119

.2420

.2743

.3085

.3446

.3821

.4207

.4602

.5000

.0003

.0005

.0007

.0009

.0013

.0018

.0025

.0034

.0045

.0060

.0080

.0104

.0136

.0174

.0222

.0281

.0351

.0436

.0537

.0655

.0793

.0951

.1131

.1335

.1562

.1814

.2090

.2389

.2709

.3050

.3409

.3783

.4168

.4562

.4960

.0003

.0005

.0006

.0009

.0013

.0018

.0024

.0033

.0044

.0059

.0078

.0102

.0132

.0170

.0217

.0274

.0344

.0427

.0526

.0643

.0778

.0934

.1112

.1314

.1539

.1788

.2061

.2358

.2676

.3015

.3372

.3745

.4129

.4522

.4920 

.0003

.0004

.0006

.0009

.0012

.0017

.0023

.0032

.0043

.0057

.0075

.0099

.0129

.0166

.0212

.0268

.0336

.0418

.0516

.0630

.0764

.0918

.1093

.1292

.1515

.1762

.2033

.2327

.2643

.2981

.3336

.3707

.4090

.4483

.4880

.0003

.0004

.0006

.0008

.0012

.0016

.0023

.0031

.0041

.0055

.0073

.0096

.0125

.0162

.0207

.0262

.0329

.0409

.0505

.0618

.0749

.0901

.1075

.1271

.1492

.1736

.2005

.2296

.2611

.2946

.3300

.3669

.4052

.4443

.4840

.0003

.0004

.0006

.0008

.0011

.0016

.0022

.0030

.0040

.0054

.0071

.0094

.0122

.0158

.0202

.0256

.0322

.0401

.0495

.0606

.0735

.0885

.1056

.1251

.1469

.1711

.1977

.2266

.2578

.2912

.3264

.3632

.4013

.4404

.4801

.0003

.0004

.0006

.0008

.0011

.0015

.0021

.0029

.0039

.0052

.0069

.0091

.0119

.0154

.0197

.0250

.0314

.0392

.0485

.0594

.0721

.0869

.1038

.1230

.1446

.1685

.1949

.2236

.2546

.2877

.3228

.3594

.3974

.4364

.4761

.0003

.0004

.0005

.0008

.0011

.0015

.0021

.0028

.0038

.0051

.0068

.0089

.0116

.0150

.0192

.0244

.0307

.0384

.0475

.0582

.0708

.0853

.1020

.1210

.1423

.1660

.1922

.2206

.2514

.2843

.3192

.3557

.3936

.4325

.4721

.0003

.0004

.0005

.0007

.0010

.0014

.0020

.0027

.0037

.0049

.0066

.0087

.0113

.0146

.0188

.0239

.0301

.0375

.0465

.0571

.0694

.0838

.1003

.1190

.1401

.1635

.1894

.2177

.2483

.2810

.3156

.3520

.3897

.4286

.4681

.0002

.0003

.0005

.0007

.0010

.0014

.0019

.0026

.0036

.0048

.0064

.0084

.0110

.0143

.0183

.0233

.0294

.0367

.0455

.0559

.0681

.0823

.0985

.1170

.1379

.1611

.1867

.2148

.2451

.2776

.3121

.3483

.3859

.4247

.4641

.01 .02 .03 .04 .05 .06 .07 .08 .09

7 / 59



Finding p-value

From the example last week:

  Monday February 2 20:38:46 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg wage educ, robust

Linear regression                                      Number of obs =      935
                                                       F(  1,   933) =    95.65
                                                       Prob > F      =  0.0000
                                                       R-squared     =  0.1070
                                                       Root MSE      =  382.32

                            Robust
        wage       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

        educ    60.21428   6.156956     9.78   0.000      48.1312    72.29737
       _cons    146.9524   80.26953     1.83   0.067    -10.57731    304.4822

The constant has a computed t value of 1.83. Since n is large we can use
the z-table. The p-value is 2φ(−1.83).
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Finding p-value

Table entry

Table entry for z is the area under the standard normal curve
to the left of z.

Standard Normal Probabilities

z

z .00

–3.4
–3.3
–3.2
–3.1
–3.0
–2.9
–2.8
–2.7
–2.6
–2.5
–2.4
–2.3
–2.2
–2.1
–2.0
–1.9
–1.8
–1.7
–1.6
–1.5
–1.4
–1.3
–1.2
–1.1
–1.0
–0.9
–0.8
–0.7
–0.6
–0.5
–0.4
–0.3
–0.2
–0.1
–0.0

.0003

.0005

.0007

.0010

.0013

.0019

.0026

.0035

.0047

.0062

.0082

.0107

.0139

.0179

.0228

.0287

.0359

.0446

.0548

.0668

.0808

.0968

.1151

.1357

.1587

.1841

.2119

.2420

.2743

.3085

.3446

.3821

.4207

.4602

.5000

.0003

.0005

.0007

.0009

.0013

.0018

.0025

.0034

.0045

.0060

.0080

.0104

.0136

.0174

.0222

.0281

.0351

.0436

.0537

.0655

.0793

.0951

.1131

.1335

.1562

.1814

.2090

.2389

.2709

.3050

.3409

.3783

.4168

.4562

.4960

.0003

.0005

.0006

.0009

.0013

.0018

.0024

.0033

.0044

.0059

.0078

.0102

.0132

.0170

.0217

.0274

.0344

.0427

.0526

.0643

.0778

.0934

.1112

.1314

.1539

.1788

.2061

.2358

.2676

.3015

.3372

.3745

.4129

.4522

.4920 

.0003

.0004

.0006

.0009

.0012

.0017

.0023

.0032

.0043

.0057

.0075

.0099

.0129

.0166

.0212

.0268

.0336

.0418

.0516

.0630

.0764

.0918

.1093

.1292

.1515

.1762

.2033

.2327

.2643

.2981

.3336

.3707

.4090

.4483

.4880

.0003

.0004

.0006

.0008

.0012

.0016

.0023

.0031

.0041

.0055

.0073

.0096

.0125

.0162

.0207

.0262

.0329

.0409

.0505

.0618

.0749

.0901

.1075

.1271

.1492

.1736

.2005

.2296

.2611

.2946

.3300

.3669

.4052

.4443

.4840

.0003

.0004

.0006

.0008

.0011

.0016

.0022

.0030

.0040

.0054

.0071

.0094

.0122

.0158

.0202

.0256

.0322

.0401

.0495

.0606

.0735

.0885

.1056

.1251

.1469

.1711

.1977

.2266

.2578

.2912

.3264

.3632

.4013

.4404

.4801

.0003

.0004

.0006

.0008

.0011

.0015

.0021

.0029

.0039

.0052

.0069

.0091

.0119

.0154

.0197

.0250

.0314

.0392

.0485

.0594

.0721

.0869

.1038

.1230

.1446

.1685

.1949

.2236

.2546

.2877

.3228

.3594

.3974

.4364

.4761

.0003

.0004

.0005

.0008

.0011

.0015

.0021

.0028

.0038

.0051

.0068

.0089

.0116

.0150

.0192

.0244

.0307

.0384

.0475

.0582

.0708

.0853

.1020

.1210

.1423

.1660

.1922

.2206

.2514

.2843

.3192

.3557

.3936

.4325

.4721

.0003

.0004

.0005

.0007

.0010

.0014

.0020

.0027

.0037

.0049

.0066

.0087

.0113

.0146

.0188

.0239

.0301

.0375

.0465

.0571

.0694

.0838

.1003

.1190

.1401

.1635

.1894

.2177

.2483

.2810

.3156

.3520

.3897

.4286

.4681

.0002

.0003

.0005

.0007

.0010

.0014

.0019

.0026

.0036

.0048

.0064

.0084

.0110

.0143

.0183

.0233

.0294

.0367

.0455

.0559

.0681

.0823

.0985

.1170

.1379

.1611

.1867

.2148

.2451

.2776

.3121

.3483

.3859

.4247

.4641

.01 .02 .03 .04 .05 .06 .07 .08 .09

p = 2 ∗ 0.036

= 0.0672
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The Z-table

Remember that:
φ(−Z ) = 1− φ(Z )

Thus the table does not have to show the probability distribution for both
positive and negative Z.

10 / 59



Confidence intervals for a single coefficient

Confidence interval for βj

[β̂j − c ∗ SE (β̂j), β̂j + c ∗ SE (β̂j)]

where c is the critical value for the given confidence level.
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Testing hypotheses about a single linear combination of
the parameters
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Linear combination of parameters

• Sometimes economic theory suggests relationships between
coefficients.

• We can test any linear combination of parameters.

• A linear combination of parameters specifies only one restriction, but
the restriction involves multiple parameters.

• The general version of a linear combination of two parameters is:

H0 : αβ1 + γβ2 = θ1,0

• The linear combination can be tested by the t-statistic

t =
αβ̂1 + γβ̂2 − θ1,0
se(αβ̂1 + γβ̂2)

• Or simply define αβ1 + γβ2 = θ1:

t =
θ̂1 − θ1,0
se(θ̂)
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Standard error of linear combination

• To find the standard error of θ̂1 we must first obtain the variance:
(for notation simplicity I use α = 1 and γ = 1)

Var(β̂1 + β̂2) = Var(β̂1) + Var(β̂2) + 2Cov(β̂1, β̂2)

SE (β̂1 + β̂2) =

√
Var(β̂1 + β̂2)

The estimator of the standard error is thus given by:

SE (β̂1 + β̂2) =

√
[se(β̂1)]2 + [se(β̂2)]2 + 2s12
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Testing a linear combination

• Neither the standard error of θ̂1 nor the covariance of the parameters
is given in a standard regression.

• To perform hypothesis testing of θ̂1 (as well as any other linear
combination of parameters) you either need:

• To rewrite the model so that the standard error of the linear
combination is given in a standard regression.

• A statistical software that either computes the sample covariance
between the parameters or allow direct testing of linear combinations.
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Rewriting model

• An example of a linear combination of parameters is that we may
believe that the effect of two variables are the same.

• This can be tested by testing whether the two regression coefficients
are equal, for example β1 = β2.

• This is equivalent to testing the following linear constraint:

H0 : β1 − β2 = 0

• The initial model is then:

Y = β0 + β1X1 + β2X2 + u

• But it can be rewritten to:

Y = β0 + γ1X1 + β2(X2 − X1) + u
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Example rewriting model

• So far we have considered education as one single type of education

• However, there are different types of higher education.

• In Norway we have university college (hyskole) and university, in the
US they have a two year college (junior college) and a four year
college (university).

• Is the return to one year of education at a junior college the same as
one year of education at a university?
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Example rewriting model

The model:
wage = β0 + β1jc + β2univ + β3exp + u

The null hypothesis can be used to specify a new parameter:

H0 : β1 − β2 = θ1 thus β1 = θ1 + β2

And inserting this into the original model you can write:

wage = β0 + (θ1 + β2)jc + β2univ + β3exp + u

= β0 + θ1jc + β2(jc + univ) + β3exp + u

= β0 + θ1jc + β2totcoll + β3exp + u

(1)

Thus the parameter of interest is now the coefficient of jc, thus by
creating a variable jc+college and running the regression we directly
obtain the standard error of θ1.
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Example rewriting model

  Monday February 16 13:26:27 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg wage jc univ exper

      Source        SS       df       MS              Number of obs =     6763
           F(  3,  6759) =   459.11

       Model   32213.1516     3  10737.7172           Prob > F      =  0.0000
    Residual   158080.038  6759  23.3880808           R-squared     =  0.1693

           Adj R-squared =  0.1689
       Total    190293.19  6762  28.1415543           Root MSE      =  4.8361

        wage       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

          jc    .6078403   .0767774     7.92   0.000     .4573325    .7583481
        univ    .7969221   .0259575    30.70   0.000     .7460373    .8478069
       exper    .0415971   .0017705    23.49   0.000     .0381263    .0450678
       _cons    3.802714    .236784    16.06   0.000     3.338543    4.266885

2 . reg wage jc totcoll exper

      Source        SS       df       MS              Number of obs =     6763
           F(  3,  6759) =   459.11

       Model   32213.1516     3  10737.7172           Prob > F      =  0.0000
    Residual   158080.038  6759  23.3880808           R-squared     =  0.1693

           Adj R-squared =  0.1689
       Total    190293.19  6762  28.1415543           Root MSE      =  4.8361

        wage       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

          jc   -.1890818   .0779816    -2.42   0.015    -.3419503   -.0362132
     totcoll    .7969221   .0259575    30.70   0.000     .7460373    .8478069
       exper    .0415971   .0017705    23.49   0.000     .0381263    .0450678
       _cons    3.802714    .236784    16.06   0.000     3.338543    4.266885
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Command in stata

  Monday February 16 13:34:41 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg wage jc univ exper

      Source        SS       df       MS              Number of obs =     6763
           F(  3,  6759) =   459.11

       Model   32213.1516     3  10737.7172           Prob > F      =  0.0000
    Residual   158080.038  6759  23.3880808           R-squared     =  0.1693

           Adj R-squared =  0.1689
       Total    190293.19  6762  28.1415543           Root MSE      =  4.8361

        wage       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

          jc    .6078403   .0767774     7.92   0.000     .4573325    .7583481
        univ    .7969221   .0259575    30.70   0.000     .7460373    .8478069
       exper    .0415971   .0017705    23.49   0.000     .0381263    .0450678
       _cons    3.802714    .236784    16.06   0.000     3.338543    4.266885

2 . lincom jc-univ

 ( 1)  jc - univ = 0

        wage       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

         (1)   -.1890818   .0779816    -2.42   0.015    -.3419503   -.0362132
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Testing multiple linear restrictions
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Test of joint hypotheses

• A joint hypothesis is a test that imposes two or more restrictions on
the regression coefficients.

• The general joint hypothesis is of the form:

H0 : βj = βj ,0, βm = βm,0...., for a total of q restrictions

• With the alternative hypothesis:

H1 : One or more of the q restrictions under H0 does not hold.

• If the null hypothesis concerns the value of two coefficients we say
that the null hypothesis imposes two restrictions on the multiple
regression model.

• If any one of the equalities under the null hypothesis is false the joint
null hypothesis itself is false.
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Test for exclusion

• A common joint hypothesis test is that a set of q variables all equal
to zero.

• For example if we test the null hypothesis that the coefficients of xj
and xk both equal to zero we test:

H0 : βj = βk = 0 vs.

H1 : βj 6= 0 and/or βk 6= 0.

• If the null is not rejected we say that xj and xk are jointly insignificant
which often justifies dropping them from the equation.

• If the null is rejected we say that the variables are jointly statistically
significant at the given significance level.

• A joint hypothesis test does not give information about which of the
variables has a partial effect on Y if the null is rejected.
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Example joint hypotheses

If the regression model is:

price = β0 + β1assess + β2lotsize + β3sqrft + β4bdrms + u

• where assess is the assessed housing value before the house was sold,
a null hypothesis may be that none of the other included variables
affect price once assess is accounted for.

• Thus means that the hypothesis can be written as:
H0 : β2 = β3 = β4 = 0, or in other words, once the assessed housing
value is controlled for house statistics such as lot size, house size and
number of bedrooms have no partial effect on price.

• The null in this setting has three exclusion restrictions thus q=3.
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Test statistic for joint hypothesis

Can we consider the joint test as a repeated t-test where we test each of
the variables with the corresponding t-values?

• Assume that we want to test:

H0 : β1 = β1,0 and β2 = β2,0

• against
H0 : β1 6= β1,0 and/or β2 6= β2,0

• We can regard this as a joint null hypothesis made up of:

H ′0 : β1 = β1,0 and H ′′0 = β2 = β2,0

• assume as a simplification that the t-tests for the two null hypothesis
are stochastically independent with significance level ε1 and ε2.
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Significance level for repeated t-test

The overall significance level is then:

P(reject either H ′0 or H ′′0 |H0) =

1−P(reject neither H ′0 nor H ′′0 |H0) =

1−(1− ε1)(1− ε2)

ε1 + ε2(1− ε1)

If you set the two significance levels equal to each other then:

P(reject either H ′0 or H ′′0 |H0) = ε+ ε(1− ε) > ε

Thus the significance level of this joint test is larger than the level of each
individual test.
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Repeated t-test

• The previous illustration indicates that testing the variables
individually gives another significance level than the one specified for
each hypothesis.

• Then what should constitute rejecting at each significance level?

• The Bonferroni test corrects the individual significance level so that
the significance level of the test equals the desired significance level.

• For example if we want an overall significance level of 5% in our
example then we should correct ε so that it satisfies
0.05 = ε+ ε(1− ε)
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The Bonferroni test of a joint hypothesis

• In general the Bonferroni test can be conducted even when the
t-statistics are correlated.

• The overall significance level of α is secured by choosing the
significance level of each test so that:

ε =
α

m
(Bonferroni)

• Where m is the number of individual tests.

• However, this is not the preferred method of testing as the t-statistic
is calculated without restriction on the other parameters.

• The F-test is the preferred method as it is a better test, but the
Bonferroni method may be useful if you only have the regression
results and not the data.
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The F-test
• The F-test is the preferred method for testing joint hypotheses.
• The F-test requires that you run two regressions.
• Lets call the full model, the model with all the included variables the

unrestricted model.

y = β0 + β1x1 + ...+ βkxk + u

• The model without the q variables we hypothesize is zero is then
called the restricted model. H0 : βk−q+1 = 0, ...βk = 0

• General:
y = β0 + β1 + ...+ βk−qxk−q + u

• Example unrestricted

price = β0 + β1assess + β2lotsize + β3sqrft + β4bdrms + u

• Example restricted.

price = β0 + β1assess + u

• The restricted model always has fewer parameters than the
unrestricted model.
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The F-statistic

• To test statistical significance we need to compute a statistic which
we know the sampling distribution of under the null hypothesis.

• Under the null hypothesis, and assuming that the OLS assumptions
hold, F is distributed as an F random variable with (q,n-k-1) degrees
of freedom.

• This is written as F ∼ Fq,n−k−1

• In large samples the F statistic is distributed Fq,∞

• As with the t-statistic we will reject the null hypothesis when F is
sufficiently large. F > c.

• Note:
• The variables can be jointly significant even if all the included variables

are individually insignificant.
• The variables can be jointly insignificant even when one (or more) of

the variables are individually significant.
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The F-statistic

F ≡ (SSRR + SSRUR)/q

SSRUR/(n − kUR − 1)

• The F-statistic measures the relative increase in the SSR when
moving from the unrestricted to the restricted model.

• Heuristically, we reject the joint H0 if SSRR is significantly larger than
SSRUR

• The F-statistic is used for testing whether the increase in SSR from
the unrestricted model to the restricted model is large enough to
warrant the rejection of the null hypothesis.
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The F-statistic and R2

• Since SSR is the main element in R2 the formula for F can be written
in terms of the R2

F =
(R2

UR − R2
R)/q

(1− R2
UR)/(n − kur − 1)
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Heteroskedasticity and the F-statistic

• Controlling for heteroskedasticity in the regression adjusts the
standard errors which makes the statistics that rely on the standard
errors reliable.

• However, the robust command does not affect the SSR of the
regression.

• The formulas given here is only correct if the errors are homoskedastic.

• However, Stata can compute heteroskedasticity robust F-statistic.
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Example homoskedastic F-using formula

  Thursday February 19 08:48:34 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg testscr str expn_stu el_pct, robust

Linear regression                                      Number of obs =      420
                                                       F(  3,   416) =   147.20
                                                       Prob > F      =  0.0000
                                                       R-squared     =  0.4366
                                                       Root MSE      =  14.353

                            Robust
     testscr       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

         str   -.2863992   .4820728    -0.59   0.553    -1.234002     .661203
    expn_stu    .0038679   .0015807     2.45   0.015     .0007607    .0069751
      el_pct   -.6560227   .0317844   -20.64   0.000    -.7185008   -.5935446
       _cons    649.5779   15.45834    42.02   0.000     619.1917    679.9641

2 . reg testscr el_pct, robust

Linear regression                                      Number of obs =      420
                                                       F(  1,   418) =   436.58
                                                       Prob > F      =  0.0000
                                                       R-squared     =  0.4149
                                                       Root MSE      =  14.592

                            Robust
     testscr       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

      el_pct   -.6711562   .0321211   -20.89   0.000    -.7342952   -.6080172
       _cons    664.7394   .9740374   682.46   0.000     662.8248    666.6541

3 . display (0.4366-0.4149)/2/((1-0.4366)/(420-3-1))
8.0113596
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Example homoskedastic F-using Stata

  Thursday February 19 08:51:01 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg testscr str expn_stu el_pct

      Source        SS       df       MS              Number of obs =      420
           F(  3,   416) =   107.45

       Model   66409.8837     3  22136.6279           Prob > F      =  0.0000
    Residual   85699.7099   416  206.008918           R-squared     =  0.4366

           Adj R-squared =  0.4325
       Total   152109.594   419  363.030056           Root MSE      =  14.353

     testscr       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

         str   -.2863992   .4805232    -0.60   0.551    -1.230955     .658157
    expn_stu    .0038679   .0014121     2.74   0.006     .0010921    .0066437
      el_pct   -.6560227   .0391059   -16.78   0.000    -.7328924   -.5791529
       _cons    649.5779   15.20572    42.72   0.000     619.6883    679.4676

2 . test str=expn_stu = 0

 ( 1)  str - expn_stu = 0
 ( 2)  str = 0

       F(  2,   416) =     8.01
            Prob > F =     0.0004
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Example heteroskedasticity robust F
  Thursday February 19 08:50:29 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg testscr str expn_stu el_pct, robust

Linear regression                                      Number of obs =      420
                                                       F(  3,   416) =   147.20
                                                       Prob > F      =  0.0000
                                                       R-squared     =  0.4366
                                                       Root MSE      =  14.353

                            Robust
     testscr       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

         str   -.2863992   .4820728    -0.59   0.553    -1.234002     .661203
    expn_stu    .0038679   .0015807     2.45   0.015     .0007607    .0069751
      el_pct   -.6560227   .0317844   -20.64   0.000    -.7185008   -.5935446
       _cons    649.5779   15.45834    42.02   0.000     619.1917    679.9641

2 . test str=expn_stu = 0

 ( 1)  str - expn_stu = 0
 ( 2)  str = 0

       F(  2,   416) =     5.43
            Prob > F =     0.0047
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The p-value of the F-statistic

• If you have a large sample you can use the large sample Fq,∞
approximation to compute the p-value.

• The p-value is useful since the F distribution depends on the degrees
of freedom in the numerator and denominator and thus it is hard to
get a feel for how strong or weak the evidence is against the null by
simply looking at the value of the F statistic and one or two critical
values.

p − value = PR[Fq,∞ > F act ]

• The p-value is still the probability of observing a value of F at least as
large as we did, given that the null hypothesis is true.
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Testing general linear restrictions

• The examples given here test whether a set of independent variables
all equal to zero.

• However, the F-test can be used to test more complicated restrictions.

• The approach is still to compute the unrestricted model and impose
the restrictions to obtain the restricted model.

• It is however a bit more complicated to obtain the unrestricted model
in these cases as it might involve redefining the dependent variable.

• Note: if the dependent variable is different in the restricted and the
unrestricted model the R2 formula cannot be used as TSSUR 6= TSSR
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The F-test with q=2 restrictions
If we want to test the joint hypothesis that β1 and β2 is both equal to zero
we can write:

H0 : β1 = 0 and β2 = 0 vs. β1 6= 0 or β2 6= 0.

• To test the hypothesis we need to obtain the F-statistic

• In the two restriction case:

F =
1

2

(
t21 + t22 − 2ρ̂t1,t2t1, t2

1− ρ̂t1,t2t1, t2

)
• Where t1 is the t-statistic associated with β1 and t2 is the t-statistic

associated with β2.

• And ρ̂t1,t2t1, t2 is an estimator of the correlation between the two
t-statistics.

• However ρ̂t1,t2 is not easily obtained, thus the SSR formula is
preferred.
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Relationship between F and t statistic

• When q=1 the F-statistic tests a single restriction.

• Thus it is analogous to testing a single coefficient.

• The F-statistic is the square of the t-statistic.

• Since t2n−k−2 has an F1,n−k−1 distribution the two approaches lead to
exactly the same outcome, provided that the alternative is two-sided.

• The t-statistic is more flexible for a single hypothesis as it can also be
used for one-sided tests.

• In addition the t statistic is easier obtained than the F statistic
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Example joint insignificance
The following example shows that a variable can be individually
significant, but jointly insignificant with another variable.

  Thursday February 19 13:35:05 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg wage jc univ ne nc south black hispanic, robust

Linear regression                                      Number of obs =     6763
                                                       F(  7,  6755) =   118.05
                                                       Prob > F      =  0.0000
                                                       R-squared     =  0.1114
                                                       Root MSE      =  5.0033

                            Robust
        wage       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

          jc    .5867815    .077754     7.55   0.000     .4343592    .7392038
        univ    .7175047   .0286009    25.09   0.000     .6614379    .7735716
          ne    .2013285   .2045864     0.98   0.325    -.1997254    .6023824
          nc   -.4011147   .1922327    -2.09   0.037    -.7779514   -.0242779
       south   -.6561036   .1870899    -3.51   0.000    -1.022859   -.2893485
       black   -1.211106   .1966389    -6.16   0.000     -1.59658   -.8256322
    hispanic   -.2937563   .2782542    -1.06   0.291    -.8392222    .2517096
       _cons    9.474505   .1663662    56.95   0.000     9.148375    9.800635

2 . test nc=hispanic=0

 ( 1)  nc - hispanic = 0
 ( 2)  nc = 0

       F(  2,  6755) =     2.37
            Prob > F =     0.0932
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Example joint significance
The following example shows that two variables can be individually
insignificant, but jointly significant.

  Saturday February 28 10:27:06 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg lsalary years gamesyr hrunsyr rbisyr bavg, robust

Linear regression                                      Number of obs =      353
                                                       F(  5,   347) =   136.52
                                                       Prob > F      =  0.0000
                                                       R-squared     =  0.6278
                                                       Root MSE      =  .72658

                            Robust
     lsalary       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       years    .0688626   .0156569     4.40   0.000     .0380682    .0996571
     gamesyr    .0125521   .0026492     4.74   0.000     .0073416    .0177626
     hrunsyr    .0144295   .0165958     0.87   0.385    -.0182115    .0470706
      rbisyr    .0107657   .0071903     1.50   0.135    -.0033763    .0249078
        bavg    .0009786   .0008162     1.20   0.231    -.0006267    .0025839
       _cons    11.19242   .2366536    47.29   0.000     10.72696    11.65788

2 . test (hrunsyr=0) (rbisyr=0)

 ( 1)  hrunsyr = 0
 ( 2)  rbisyr = 0

       F(  2,   347) =    13.18
            Prob > F =     0.0000
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The F-statistic of the regression

• Stata automatically reports the F statistic of the regression.

• This is the statistic of the test that all the slope coefficients are zero.

• Under this null hypothesis none of the regressors explains any of the
variation in Yi .

• The restricted model is then:

Y = β0 + u

• And the F-statistic is then:

R2/k

(1− R2)/(n − k − 1)

• This F-statistic determines the overall significance of the regression.
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Non-nested models

• The restricted model is a nested version of the unrestricted as all the
parts in the restricted model is included in the unrestricted model.

• Two variables can be individually insignificant in the full model, but
jointly significant.

• This suggests that the variables are highly correlated, which means
that if you included only one of them in the regression it might be
individually significant.

• However, which should you include?

• In the general case there might be many variables you find jointly
significant, then you could specify multiple models, one for each of the
dependent variables, but how should you choose between the models?
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Non-nested models

lsalary = β0 + β1years + β2bavg + β3gamesyr + β4hrunsyr + u

lsalary = β0 + β1years + β2bavg + β3gamesyr + β4rbisyr + u

• Where salary is yearly salary of a baseball player, bavg is batting
average, hrunsyr is homeruns per year and rbisyr is runs batted in per
year.

• If both of hrunsyr and rbisyr are included in the same regression they
are individually insignificant as they are so strongly correlated, while
they are significant if they are included separately.

• The adjusted R-squared can serve as an indicator for which model is
to prefer.

• Note: The dependent variable of the two models must be on the
same functional form.
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Variable selection

1 Identify the variable of interest.

2 Think of the omitted causal effects that could result in omitted
variable bias.

3 Include those omitted causal effects if you can or if you can’t, include
variables correlated with them so serve as control variables.

4 Sensitivity check your model by alternative specifications.
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Control variables

Control variable

A control variable W is a variable that is correlated with, and controls for,
an omitted causal factor in the regression of Y on X, but which itself does
not necessarily have a causal effect on Y.

TestScore = β0 + β1STR + β2PctEL + β3LchPct

• STR is the student teacher ratio and the variable of interest

• PctEL is the percentage of english learners and probably has a direct
causal effect, but it also serves as a control as it is correlated with
outside learning opportunities.

• LctPct might have cauasal effect and is correlated with and controls
for income-related outside learning opportunities.
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Control variables

• An effective control variable is one which, when included in the
regression, makes the error term uncorrelated with the variable of
interest.

• Holding constant the control variable(s), the variable of interest is as
if randomly assigned.

• Among individuals (entities) with the same value of the control
variable(s), the variable of interest is uncorrelated with the omitted
determinants of Y.
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Control variables

• Control variables are selected because they are correlated with
omitted factors, that means that they are likely to be biased.

• This means that the zero conditional mean assumption will not hold.

• However, the control variable is effective if the mean of u does not
depend on the variables of interest given the control variable. This is
called the conditional mean independence.
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Conditional mean independence

Conditional mean independence

E (u|X ,W ) = E (u|W )

• The zero conditional mean assumption ensures unbiased estimates
however it a strong assumption and can be replaced by the weaker
conditional mean independence assumption.

• If the conditional mean independence assumption holds the variable
of interest has a causal interpretation (but the control variables are
potentially biased).
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Sensitivity check

• Start with specifying your base specification which contains the
variables of primary interest and the control variables suggested by
economic theory and expert judgement.

• Develop a list of candidate alternative specifications.

• If the estimates of the coefficients are numerically similar across the
alternative specifications, then this provides evidence that the
estimates from your base specification are reliable.

• If they are not similar this often is evidence that the original
specification had omitted variable bias.
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Selecting variables to include in your model

• Note that an increase in adjusted R2 does not necessarily mean that
an added variable is statistically significant. Thus perform an
hypothesis test using the t-statistic.

• A high R2 does not mean that the model is correctly specified or that
there is no omitted variable bias. Thus you need to do reasoning and
testing alternative specifications independent of R2.

• The question of what constitutes the right set of regressors is difficult
as you must weigh issues of omitted variable bias, data availability,
data quality and economic theory.
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Reporting regression results
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Reporting regression results

• The estimated OLS coefficients should always be reported and along
with it the standard errors and the number of observations used in
estimation.

• Some authors prefer to report the t-statistic, but the standard errors
are to prefer.

• For the key variables in an analysis you should interpret the estimated
coefficients.

• The economic importance of the estimates of the key variables should
be discussed.

• The R-squared from the regression should always bee included.

• If only a couple of models are being estimated the results can be
summarized in equation form, but in many cases a table (or multiple
tables) is to prefer.

• The dependent variable should be indicated clearly in the table, and
the independent variables should be listed in the first column.
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Reporting regression results

• You should think about the scale of the variables so that it easy to
read and interpret your regression results.

• It is common to indicate significance levels with stars.

• If there is any relevant F-statistic then you should report this.
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California test score data set

• The book throughout the first chapters use a data set constituting
the tests scores of Californian students.

• The primary interest is in establishing whether the student teacher
ratio (STR) has a causal effect on the student tests scores.

• Factor such as outside learning opportunities are correlated with STR
and provides potential of OVB.

• These factors are not directly measurable, but we can include control
variables that are correlated with these omitted factors.

• If the control variables are adequate in the sense that the conditional
mean independence assumption holds, then we can give the
coefficient a causal interpretation.
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California test score data set

• Potential background variables:
• Percentage of students who are still learning English.
• The percentage of students who are eligible for a subsidized or free

lunch.
• The percentage of students whose faimilies qualify for a California

income assistance program.
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Summary multiple regression

• Multiple regression allows you to estimate the effect on Y of a change
in X1 holding other included variables constant.

• If you can measure a variable, you can avoid omitted variable bias
from that variable by including it.

• If you can’t measure the omitted variable, you still might be able to
control for its effect by including a control variable.

• There is no simple recipe for deciding which variables belong in a
regression, you must exercise judgment.

• One approach is to specify a base model relying on a-priori reasoning,
then explore the sensitivity of the key estimate(s) in alternative
specifications.
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