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• Chapter 4 in S&W

• Section 17.1 in S&W (extended OLS assumptions)
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Overview

In this lecture we will:

• Clear up some things from previous lecture

• Start on the linear regression model with one regressor
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Standard deviation and standard error

• (σ) - Population standard deviation, the true standard deviation in
the population.

• Sample standard deviation: (s) An estimator of the population
standard deviation.

• sy is the estimate of the population standard deviation for the random
variable Y of the population from which the sample was drawn.

• Standard error of an estimator: An estimator of the standard
deviation of the estimator.

• SE (Ȳ ) = σ̂Ȳ = sy/
√
n is the standard error of sample mean, which is

an estimator of the standard deviation of Ȳ .

• The sample mean is an estimator of the population mean.

4 / 67



Standard deviation and standard error

Population parameter Sample statistic

µ = Population mean Ȳ =Sample estimate of
population mean

σ = Population standard deviation s=sample standard deviation,
estimator of σ

σȳ = Standard deviation of Ȳ SE (Ȳ ) = σ̂ȳ=Standard error of Ȳ
estimator of σȳ .
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Standard error

Standard error

SE (Ȳ ) =
sy√
n

• The standard error of the sample average says something about the
uncertainty around the estimate of the mean.

• It is an estimate of how far the sample mean is likely to be from the
population mean.

• The standard error falls as the sample size increases as the extent of
chance variation is reduced.

• The standard error is used to indicate uncertainty around the
estimate.
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Sample standard deviation

Sample standard deviation

sy =

√√√√ 1

n − 1

n∑
i=1

(Yi − Ȳ )2

• The sample standard deviation is the degree to which individuals
within the sample differs from the sample mean.

• The sample standard deviation will tend to the population standard
deviation (σy ) as the sample size increases.

• The sample standard deviation is used to describe how widely
scattered the measurements are.
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T-statistic

• A normally distributed variable (X) can be made standard normal by:

Z =
X − µ
σ/
√
n

• In practice we rarely know the population standard deviation required
to calculate the standard normal variable Z. The alternative is to
calculate the T variable:

T =
X − µ
sx/
√
n

• Note that the t-distribution also depends on the assumption that X is
normal distributed.

• The sample average is normally distributed whenever:
• Xi is normally distributed.
• n is large (CLT).
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The simple linear regression model
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Definition of the simple linear regression model

Goals of regression models:

• ”Estimate how X effects Y ”

• ”Explain Y in terms of X”

• ”Study how Y varies with changes in X”

For example:

Explained (y) Explanatory (x)

Wages Education

Grade Hours of study

Smoke consumption Cigarette tax

Crop Yield Fertilizer

Can we write this in an econometric model?
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The econometric model

Econometric model

An equation relating the dependent variable to a set of explanatory
variables and unobserved disturbances, where unknown population
parameters determine the ceteris paribus effect of each explanatory
variable.

The econometric model must:

• Allow for other factors than X to affect Y

• Specify a functional relationship between X and Y

• Captures a ceteris paribus effect of X on Y
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The simple linear regression model

The simple linear regression model can in general form be written as:

Y = β0 + β1X + u

• It is also called the bivariate linear regression model.

• The econometric model specifying the relationship between Y and X
is typically referred to as the population regression line

• u: is the error term (some books use e or ε instead) and represents all
factors other than X that affects Y.

• β0: Population constant term/intercept.

• β1: Population slope parameter, the change in Y associated with a
one unit change in X.
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The simple linear regression model

If we increase X by ∆ then:
Before:

Y = β0 + β1X + u

After:
Y + ∆Y = β0 + β1(X + ∆X ) + (u + ∆u)

Difference:
∆Y = β1∆X + ∆u

As long as ∆u is zero β1 measures the effect of a unit change in X on Y.
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Example

If we are interested in the effect of education on wages the model is:

wages = β0 + β1years of education + other factors

here β1 measure the ceteris paribus effect (holding all other factors
constant) of one more year of education, that is:

β1 =
change in wages

change in education
=

∆wages

∆education
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Linear in parameters

Y = β0 + β1X + u

The SLRM is linear in parameters (β0 and β1).

• The SLRM is named linear due to being linear in parameters.

• Linear in parameters simply means that the different parameters
appear as multiplicative factors in each term.

• The above model is also linear in variables, but this does not need to
be the case.

• In chapter 5 we will cover when X is a binary variable.

• In chapter 8 we will cover X and Y being natural logarithms as well as
other functional forms of X.

• In chapter 11 we cover Y being binary
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Terminology

The variables X and Y have several different names that are used
interchangeably:

Left side (Y) Right side (X)

Dependent variable Independent variable

Explained variable Explanatory variable

Response variable Control variable

Predicted variable Predictor variable

Regressand Regressor
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Terminology

• The intercept β0 and the slope β1 are the coefficients or parameters
of the population regression line.

• Another name for the population regression line is the population
regression function.
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Estimating the simple linear regression model

• The simple linear regression model is a model where the dependent
variable is a linear function of a single independent variable, plus an
error term.

• It aims at describing the relationship between the dependent variable
and the independent variable in a population.

• But how do we estimate this line?

18 / 67



Estimating the simple linear regression model

• Need a sample of size n from the population

• Model: yi = β0 + β1xi + ui where i is observation i

• ui is the error term for observation i
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Ordinary Least Squares

• Ordinary Least Squares (OLS) is a method for estimating the
unknown parameters in a linear regression model.

• The method is to minimize the sum of squared errors.

• The OLS estimator chooses the regression coefficients so that the
estimated regression line is as close as possible to the observed data.

• Under the assumptions that we will discuss later OLS is the most
efficient estimator of the linear population regression function.
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Ordinary Least Squares

• OLS finds the line that is closest to the observed data by minimizing
the squared errors.
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Ordinary Least Squares

• The error is the horizontal distance between the regression line and
the observation

• The value given by the regression line is the predicted value of Yi

given Xi .
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Deriving the Ordinary Least Squares

• Let β̂0 and β̂1 be some estimators of β0 and β1.

• These estimators predict Yi and the prediction mistake (ûi ) is defined
as Yi − β̂0 − β̂1Xi .

• The sum of squared prediction mistakes over all n observations is:

n∑
i=1

(Yi − β̂0 − β̂1Xi )
2
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Deriving the Ordinary Least Squares

OLS finds the values of β̂0 and β̂1 that minimize the sum of the squared
prediction mistakes (the OLS estimator).

1 Use calculus to obtain the following first order conditions for this
minimization problem.

−2
n∑

i=0

(Yi − β̂0 + β̂1Xi ) = 0 (1)

−2
n∑

i=0

Xi (Yi − β̂0 + β̂1Xi ) = 0 (2)
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2 Solve the first order conditions for the unknown β̂0 and β̂1

The resulting OLS estimates of β0 and β1 are

β̂0 = Ȳ − β̂1X̄ (3)

and

β̂1 =

n∑
i=1

(Xi − X̄ )(Yi − Ȳ )

n∑
i=1

(Xi − X̄ )2

(4)
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Properties of OLS

• Given β̂0 and β̂1 we can obtain the predicted value Ŷi for each
observation.

• By definition each predicted value is on the OLS regression line.

• The OLS residuals (ûi ) is the difference between Yi and its predicted
value.

• If ûi is positive(negative) the line underpredicts (overpredicts) Yi .

• The ideal case is ûi = 0, but in most cases this is not true.
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Properties of OLS

By the definition of ûi and the first OLS first order condition the sum of
the prediction error is zero:

n∑
i=1

ûi = 0 (5)

The OLS residuals are chosen to make the residuals add up to zero.
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Properties of OLS

By the second FOC:
n∑

i=1

ûiXi = 0

The sample covariance between the independent variable and the OLS
residuals is zero.
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Properties of OLS

• The point (X̄ , Ȳ ) is always on the regression line
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Estimating OLS - example
A sample of ACT scores (American College testing) and GPA (Grade point
average) for eight college students

Student GPA ACT

1 2.8 21

2 3.4 24

3 3.0 26

4 3.5 27

5 3.6 29

6 3.0 25

7 2.7 25

8 3.7 30

Calculate:
ˆGPA = β̂0 + β̂1ACT
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Estimating OLS - example

Remember that:
β̂0 = Ȳ + β̂1X̄

¯ACT = x̄ =
1

n

n∑
i

xi = 25.875

¯GPA = ȳ =
1

n

n∑
i

ui = 3.2125

β̂0 ≈ 3.2125 + β̂1 ∗ 25.875
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Estimating OLS - example

β̂1 =

∑n
i=1(Xi − X̄ )(Yi − Ȳ )∑n

i=1(Xi − X̄ )2

1) 2)

Obs GPA ACT (xi − x̄) (yi − ȳ) 1*2 (xi − x̄)2

1 2.8 21 -4.875 -0.4125 2.01 23.77

2 3.4 24 -1.875 0.1875 -0.35 3.52

3 3.0 26 0.125 -0.2125 -0.03 0.02

4 3.5 27 1.125 0.2875 0.32 1.27

5 3.6 29 3.125 0.3875 1.21 9.77

6 3.0 25 -0.875 -0.2125 0.19 0.77

7 2.7 25 -0.875 -0.5125 0.45 0.77

8 3.7 30 4.125 0.4875 2.01 17.02

Av. 3.2125 25.875 Sum: 5.8125 56.875
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Estimating OLS - example

¯ACT = x̄ =
1

n

n∑
i

xi = 25.875

¯GPA = ȳ =
1

n

n∑
i

ui = 3.2125

β̂1 = 5.8125/56.875 ≈ 0.1022

β̂0 ≈ 3.2125− (0.1022) ∗ 25.875 ≈ 0.5681

ˆGPA = 0.5681 + 0.1022 ˆACT
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Interpretation of example

ˆGPA = 0.5681 + 0.1022ACT

• A person that has a one unit higher ACT score than another is
predicted to have approximately 0.1 higher GPA.
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Another interpretation example

Given a sample of 526 individuals the following OLS regression line can be
estimated:

ˆwage = −0.90 + 0.54educ

• Intercept indicates that a person with zero education pay 90 cents per
hour to work.

• The regression line does poor at low levels of education because only
18 people have less than 8 years of education.

• β1 indicates that one more year of education increase hourly wage by
54 cent.
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Linear regression

You may have different goals with the regression. The goal can be:

• To describe the data in a scatterplot and no substantive meaning is
attached to the regression line.

• To make forecasts, or predictions, of the value of Y for an entity not
in the data set, for which we know the value of X.

• To estimate the causal effect on Y of a change in X.
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Causality

In this course we will take a practical approach to defining causality:

Causality

A causal effect is defined to be the effect measured in an ideal randomized
controlled experiment.
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Ideal Randomized Controlled experiment

• Ideal: subjects all follow the treatment protocol.

• Randomized: subjects from the population of interest are randomly
assigned to a treatment or control group (so there are no confounding
factors).

• Controlled: Having a control group permits measuring the differential
effect of the treatment.

• Experiment: The treatment is assigned as part of the experiment,
subjects have no choice, so there is no ”reverse” causality in which
subjects choose the treatment they think will work best.

More about this will come in lecture 17.

38 / 67



Underlying assumptions of OLS

The OLS estimator is unbiased, consistent and has asymptotically normal
sampling distribution if:

1 Random sampling.

2 Large outliers are unlikely.

3 The conditional mean of ui given Xi is zero.

39 / 67



Random sample

• As covered extensively in the lecture 2, the observations in the sample
must be i.i.d.

• We will address the failure of random sampling assumption under
time-series analysis.
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Outliers

• Large outliers are unlikely when Xi and Yi have final fourth moments.
item Outliers can arise due to:

• Data entry errors.
• Sampling from a small population where some members of the

population are very different from the rest.
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Outliers

• Outlying observations can provide important information by increasing
the variation in explanatory variables which reduce standard errors.

• However, including them can dramatically change the estimated slope.

• When dealing with outliers one may want to report the OLS
regression both with and without the outliers.
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Outliers
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Zero conditional mean

Assumptions

1 For simplicity we assume that E (u) = 0.

2 The average value of u does not depend on the value of X
E (u|X ) = E (u).

Combining the two assumptions gives the zero conditional mean
assumption E (u|X ) = 0
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Zero conditional mean

Example:
wages = β0 + β1educ + u

• Ability is one of the elements in u.

• The zero conditional mean requires for example
E (abil |educ = 8) = E (abil |educ = 16).

• The average ability level must be the same for all education levels for
the assumption to hold.
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Zero conditional mean assumption

The conditional distribution of ui given Xi has a mean of zero. I.e. the
factors contained in ui are unrelated to Xi
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Efficiency of OLS

OLS is the most efficient (the one with the lowest variance) among all
linear unbiased estimators whenever:

• The three OLS assumptions hold AND

• The error is homoskedastic.
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Measures of fit

How well does the OLS regression line fit the data?

• The regression line can be divided into two elements: We can write
that yi = ŷi + ûi

• ŷi = β̂0 + β̂1x is the systematic part - the part of Y explained by X.
• ûi is the unsystematic part, the part of Y not explained by X.
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Total sum of squares

Total sum of squares

TSS = SST ≡
n∑

i=0

(yi − ȳ)2

• Total sum of squares, the sum of squared deviations of Yi from its
average

• SST is a measure of the total sample variation in the Yi , that is it
measures how spread out the Yi are in the sample.
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Explained sum of squares

Explained sum of squares

ESS ≡
n∑

i=0

(ŷi − ȳ)2

• Explained sum of squares is the sum of squared deviations of the
predicted value from its average.

• It measures the sample variation in Ŷi
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Sum of squared residuals

Sum of squared residuals

SSR ≡
n∑

i=0

û2
i

• Sum of squared residuals measures the sample variation in û
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Terminology

There is no uniform agreement about the abbreviations or the names of
the measures of fit:

• Some textbooks denote total sum of squares SST and not TSS

• Some textbooks use SSE instead of ESS

• Stata used model sum of squares to denote ESS.

• Some say regression sum of squares for explained sum of squares.

• Some say error sum of squares instead of sum of squared residuals.
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Decomposition of TSS

TSS

TSS = ESS + SSR
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R-squared

• The regression R2 is the fraction of the sample variance of Yi

explained by Xi .

R2 =
ESS

TSS
= 1− SSR

TSS

• The R2 ranges between 0 and 1

• R2 = 0 - none of the variation in Yi is explained by Xi

• R2 = 1 - all the variation is explained by Xi , all the data points lie on
the OLS line.

• A high R2 means that the regressor is good at predicting Yi (not
necessarily the same as a ”good” regression)
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Standard error of the regression

The standard error of the regression (SER) is an estimator of the standard
deviation of the regression error ui . It measures the spread of the
observation around the regression line.

SER = sû where s2
û =

1

n − 2

n∑
i=1

û2
i =

SSR

n − 2

55 / 67



Example
  Thursday January 22 15:16:17 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg wage educ

      Source        SS       df       MS              Number of obs =      526
           F(  1,   524) =   103.36

       Model   1179.73204     1  1179.73204           Prob > F      =  0.0000
    Residual   5980.68225   524  11.4135158           R-squared     =  0.1648

           Adj R-squared =  0.1632
       Total   7160.41429   525  13.6388844           Root MSE      =  3.3784

        wage       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

        educ    .5413593    .053248    10.17   0.000     .4367534    .6459651
       _cons   -.9048516   .6849678    -1.32   0.187    -2.250472    .4407687
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Interpretation of coefficients

The interpretation of the coefficients depend on the unit of measurement.

• In the wage education example the unit of measurement for education
is years of education while for wage it is dollar.

• Thus one more year of education is predicted to give $0.54 higher
wages.
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Change the unit of measurement

• If the dependent variable is multiplied by the constant c, the OLS
intercept and slope estimates are also multiplied by c.

• If the independent variable is multiplied by som nonzero constant c,
then the OLS slope coefficient is divided by c.
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Unbiasedness of OLS

• It can be shown that E (β̂1) = β1 (appendix 4.3) thus β1 is unbiased.

• This means that the sampling distribution of the estimator is centered
about the value of the population parameter.

• Note: this is a property of the estimator and says nothing about
whether an estimate for a given sample is equal to the population
parameter.

• The crucial assumption is that E (ui |Xi )) = 0 which we will come
back to in next lecture.
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Variance of the OLS estimators

• How far can we expect β̂1 to be away from β1 on average?

• The variance is necessary to choose the most efficient estimator.
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Homoskedasticity

Homoskedasticity

The error u has the same variance given any value of the explanatory
variable, in other words: Var(u|x) = σ2

• Homoskedasticity is not required for unbiased estimates.

• But it is an underlying assumption in the standard variance
calculation of the parameters.

• To make the variance expression easy the assumption that the errors
are homoskedastic are added.
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Homoskedasticity

The figure illustrates a situation where the errors are heteroskedastic, the
variance of the error increases with X.
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Variance of the OLS estimators

It can be shown (appendix 4.3) that:

Var(β̂1) =
1

n

var [(Xi − µx)ui ]

[var(Xi )]2
=

var [(Xi − µx)ui ]∑n
i=1(xi − X̄ )2
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Variance of the OLS estimators

The larger the variance of X, the smaller the variance of β̂1.
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Note on caution

• At this point you should be careful of reading too much into the
regressions we do.

• We have not covered the grounds for establishing causal effects yet.
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Regression and causality

Introduction Finding the best fit by regression Residuals and R-sq Regression and causality Summary—and next step

Regression and causality I

Three possible theoretical causal
relationships between X and Y .

I Our regression is causal if
I is true, and II (joint
causality) and III are not
true

I rXY 6= 0 in all three cases

I Can also be that a third
variable (Z ) causes both
Y and X (spurious
correlation)

27 / 30
• The regression is causal if I is true and II and III are not true.

• II is joint causality.

• III is reversed causality.

• Spurious correlation occurs if a third variable causes both Y and X.

66 / 67



Next week:

• Hypothesis testing - how to test if the slope is zero

• Confidence intervals for the slope
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