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Outline

• Mathematics

• Proof that β̂1 is unbiased and consistent

• Illustrate unbiasedness and consistency through simulation

• Hypothesis testing and confidence intervals
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Basic mathematical tools

n∑
i=1

c = nc for any constant c

n∑
i=1

cXi = c
n∑

i=1

Xi for any constant c

n∑
i=1

(Xi + Yi ) =
n∑

i=1

Xi +
n∑

i=1

Yi

Note also something that is NOT possible:

n∑
i=1

XiYi 6=
n∑

i=1

Xi

n∑
i=1

Yi
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Mathematics of OLS components
For a given set of data observations Xi (i = 1, 2, ...., n) and
yi (i = 1, 2, .....n) it can be shown that:

n∑
i=1

(xi − x̄) = 0 (I)

n∑
i=1

(Xi − X̄ )2 =
n∑

i=1

Xi (Xi − X̄ ) (II)

n∑
i=1

(Xi − X̄ )(Yi − Ȳ ) =
n∑

i=1

(Xi − X̄ )Yi − nX̄ Ȳ (III)

=
n∑

i=1

(Yi − Ȳ )Xi

=
n∑

i=1

(Xi − X̄ )Yi
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Sample covariance

Sample variance of X:

s2X =
1

n − 1

n∑
i=1

(Xi − X̄ )2

Sample covariance:

sXY =
1

n − 1

n∑
i=1

(Xi − X̄ )(Yi − Ȳ )
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Sample correlation and β̂1

The sample correlation coefficient is given by:

rX ,Y =
sXY
sX sY

In the simple linear regression model:

β̂1 = rXY
sy
sx

• sx and sy are the sample standard deviations of X and Y.

6 / 65



Mathematics of TSS

TSS = SSR + ESS

Because:

2
n∑

i=1

ûi (Ŷi − Ȳ ) = 0

Proof on blackboard.
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Mathematical properties of OLS

The OLS residuals are defined as: ûi = Yi − Ŷi , i = 1, 2, ....n, it can then
be shown that:

¯̂u =
1

n

n∑
i=1

ûi = 0

which comes from the property that:

n∑
i=1

û =
n∑

i=1

(Yi − β̂0 + β̂1Xi ) = 0

given by the first order condition for OLS.
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Mathematical properties of OLS

1

n

n∑
i=1

(ûi − ¯̂u)(Xi − X̄ ) = 0

Similarly it can be shown that:

1

n

n∑
i=1

(ûi − ¯̂u)(Ŷi − Ȳ ) = 0
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Alternative specification OLS

The OLS minimization problem:

S(β0, β1) =
n∑

i=1

(Yi − β0 − β1xi )2

can alternatively be written as:

S(α, β1) =
n∑

i=1

(Yi − α− β1(Xi − X̄ ))2

where the intercept parameter is redefined to: α = β0 + β1X̄
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Alternative specification OLS

∂S(α, β1)

∂α
= −2

n∑
i=1

[Yi − α− β1(Xi − X̄ )]

∂S(α, β1)

∂β1
= −2

n∑
i=1

[Yi − α− β1(Xi − X̄ )] ∗ (Xi − X̄ )

α̂ and β̂1 are the values of α and β1 for which the FOC is equal to zero.
Solution:

α̂ = Ȳ = β̂0 + β̂1X̄

and β1 as before.
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Unbiased estimators

Show that:
E (β̂1) = β1

Similarly it can be shown that

E (β̂0) = β0

Calculate yourself and control with solution to exercise 4.7.
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Unbiased estimators

Show that:
E (β̂1) = β1

Similarly it can be shown that

E (β̂0) = β0

Calculate yourself and control with solution to exercise 4.7.
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Consistency of β̂1

Consistency

A variable is consistent if the spread around the true parameter approaches
zero as n increases.

The spread is measured by the variance:

var(β̂1) = var

(
1
n

∑n
i=1(Xi − X̄ )(Yi − Ȳ )
1
n

∑n
i=1(Xi − X̄ )2

)

=
Var(Yi )

ns2x

• Consistent as the larger n the smaller the variance

• The larger the variance of X the lower the variance of β̂1

• Lower variance of Y lower variance of β̂1
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BLUE

• We have shown that the estimators are unbiased, but are they most
efficient?

• The linearity excludes non-linear functions of Yi

• Since OLS minimizes the spread around the regression line, it has the
lowest variance of the linear estimators.
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Distribution of β̂0 and β̂1

Normality assumption

The population error u is independent of the explanatory variables and is
normally distributed with zero mean and variance σ2 : u ∼ Normal(0, σ2)
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Distribution of estimators

• Under the OLS assumptions including the normality assumption,
sampling distribution of the OLS estimators is normal.

• β̂1 ∼ Normal [β1,Var(β̂1)]

• Thus (β̂1 − β1)/sd(β̂1) ∼ Normal(0, 1)

• : This comes from:
• A random variable which is a linear function of a normally distributed

variable is itself normally distributed.
• If we assume that u ∼ N(0, σ2) then Yi is normally distributed.
• Since the estimators β̂0 and β̂1 is linear functions of the Yi ’s then the

estimators are normally distributed.
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Normality assumption

• Whenever y takes on just a few values it cannot have anything close
to a normal distribution.

• The exact normality of OLS depends on the normality of the error.

• If the β̂1 is not normally distributed the t-statistic does not have t
distribution.

• The normal distribution of u is the same as the distribution of Y given
X.

• In large samples we can invoke the CLT to conclude that the OLS
satisfy asymptotic normality.
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Simulation

A simulation is a fictitious computer representation of reality.

1 Choose the sample size n

2 Choose the parameter values and functional form of the population
regression function.

3 Generate n values of x randomly in Stata

4 Choose probability distribution of the error term and generate n
values of u

5 Estimate the model

6 Repeat step 1 through 5 multiple times and look at the summary
statistics over the repetitions.
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Simulation
A random realization of X and u for 100 observations with the true
population function: Y = 10 + 5x + u.

How does OLS perform in estimating the underlying population function?
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Simulation
  Thursday January 29 11:18:16 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg y x

      Source        SS       df       MS              Number of obs =      100
           F(  1,    98) =  2376.86

       Model   2438.45884     1  2438.45884           Prob > F      =  0.0000
    Residual    100.53965    98  1.02591479           R-squared     =  0.9604

           Adj R-squared =  0.9600
       Total   2538.99849    99  25.6464494           Root MSE      =  1.0129

           y       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

           x     4.86004   .0996868    48.75   0.000     4.662214    5.057865
       _cons    9.951091   .1013099    98.22   0.000     9.750045    10.15214

The coefficients are close to the true population coefficients.
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Simulation

So running one simulation got us close to the estimate, how if we simulate
1000 times? Gives us 1000 estimates for β0 and β1

22 / 65



Simulation
  Thursday January 29 11:31:09 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . sum 

    Variable        Obs        Mean    Std. Dev.       Min        Max

        _b_x       1000    5.000788    .1048841   4.679994   5.318002
     _b_cons       1000    9.997947    .0994027   9.696664   10.33181

The estimated OLS coefficients approximate to the true population
coefficient. Thus OLS gives an unbiased estimate for the slope coefficient
and the constant term.

23 / 65



Simulation

Specifying wrong functional form:

• The true functional form is Y = β0 + β1X
3 + u

• But we run the regression Y = β0 + β1X + u

  Thursday January 29 11:57:46 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . 
2 . sum 

    Variable        Obs        Mean    Std. Dev.       Min        Max

        _b_x       1000    14.80622    3.053321   7.893195   28.17236
     _b_cons       1000    10.05226     1.22186    5.38526   14.49691
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Simulation

Assumption violation: The expected value of the error term is not zero,
but 3? So u ∼ N(3, 1)

  Thursday January 29 11:46:50 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

    Variable        Obs        Mean    Std. Dev.       Min        Max

        _b_x       1000    4.998194    .0975124    4.67178   5.298087
     _b_cons       1000     13.0041    .1030487   12.65324   13.33964

• As long as X and u are uncorrelated β̂1 is unbiased.

• The constant term and the error term is correlated in this situation so
β0 is biased.
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Simulation and variance

10 observations repeated on 1000 samples.

  Thursday January 29 12:21:58 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 .  
2 .  sum

    Variable        Obs        Mean    Std. Dev.       Min        Max

        _b_x       1000    4.997962    .3770747   3.270008   6.512727
     _b_cons       1000    10.01276    .3351356   8.923193   11.20773

100 observations repeated on 1000 samples.

  Thursday January 29 11:31:09 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . sum 

    Variable        Obs        Mean    Std. Dev.       Min        Max

        _b_x       1000    5.000788    .1048841   4.679994   5.318002
     _b_cons       1000    9.997947    .0994027   9.696664   10.33181
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Hypothesis testing of the regression coefficients
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Distribution of β̂1

• Given that β̂1 is either normally distributed or approximately normally
distributed the t statistic for β̂1 is t-distributed.

• Thus: (β̂1 − β1)/se(β̂1) ∼ tn−2

• As the degrees of freedom in the t-distribution gets large, the t
distribution approaches the standard normal distribution.
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T-statistic

In general the t-statistics has the form:

t =
estimator− hypothesised value

standard error of the estimator

• Since the standard error is always positive the t-statistic has the same
sign as the difference between the estimator and the hypothesized
value.

• For a given standard error the larger value of the estimator the larger
value of the t-statistic.

• If the null hypothesis is that the true parameter is zero, a large
estimator provides evidence against the null.

• T values sufficiently far from the hypothesized value result in rejection
of the null.
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Repetition hypothesis testing

1 Formulate the null and alternative hypothesis

2 Compute the standard error of the variable of interest

3 Compute the t-statistics

4 Find the rejection rule

5 Make your conclusion
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Testing hypotheses about β1

1 Formulate the null and alternative hypothesis

H0 : β1 = β1,0 vs. H1 : β1 6= β1,0 or: H1 : β1 < β1,0 or: H1 : β1 > β1,0

2 Compute the standard error:

SE (β̂1) =
√
σ̂2β1

3 Compute the t-statistics:

t =
β̂1 − β1,0
SE (β̂1)
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Step 4: Determine rejection rule

• The rejection rule depends on your desired significance level, i.e the
probability of rejecting H0 when it is in fact true.

• A 5% significance level means that we mistakenly reject H0 5% of the
time.

• Given the significance level we can find the critical value of t.

• The critical value increases as significance level falls, thus a null
hypothesis that is rejected at a 5% level is automatically rejected at
the 10% level as well.
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Rejection rules t-statistic

Compare the critical value to the t-statistic actually calculated:

• One sided: H1 : β1 > 0 : tact > tc

• One sided: H1 : β1 < 0 : tact < −tc

• Two sided: H1 : β1 6= 0 : |tact | > tc
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One-sided vs two-sided test
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One-sided vs two-sided test

An illustration of the difference between two-sided and one sided test with
40 degrees of freedom.
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Step 5: Make conclusion

• When H0 is rejected at the 5% level we usually say that X is
statistically significant, or statistically different from zero, at the 5%
level.

• If H0 is not rejected we say that X is statistically insignificant at the
5% level.

• If we fail to reject H0 we never say that we accept H0 because there
are many other values for β1 which cannot be rejected and they
cannot all be true.
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Computing p-values for t-tests

• An alternative to comparing the t-statistic to the critical t-statistic is
to compute the p-value for the t-statistic.

• With p-value you do not have to commit to the significance level
ahead of time.

• The p-value is more informative as it gives you the smallest
significance level at which the null hypothesis would have been
rejected.

• A null that is rejected at a 5% level thus must have a p-value smaller
than 5%.
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Computing p-values for t-tests

• The p-value (in SLRM) is calculated by computing the probability
that a t random variable with (n-2) degrees of freedom is larger than
tact in absolute value.

• Thus the p-value is the significance level of the test when we use the
value of the test statistic as the critical value for the test.

For the two sided test:

p-value = PrH0(|t| > |tact |) = 2P(t > tact)

= Pr(|Z | > |tact |) = 2φ(−|tact |) in large samples
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Computing p-values for t-tests

• One sided test: H1 : β1 > 0

• If β̂1 < 0 we know that the p-value is greater than 0.5 and there is no
need to calculate it.

• If β̂1 > 0 then t > 0 and the p-value is half of the two-sided p-value.

• Since the t-distribution is symmetric around zero the reversed applied
to the one sided test that β1 < 0

p − value = PrH0(t < tact) = PrH0(t > |tact |)
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Interpreting p-values

• The p-value is the probability of observing a t statistic as extreme as
we did if the null hypothesis is true.

• Small p-values are evidence against the null, large p-values provide
little evidence against the null.

• If for example the p-value =0.5 then we would observe a value of the
t statistic as extreme as we did in 50% of all random samples when
the null hypothesis is true.

• If α denotes the significance level then H0 is rejected if p-value< α.
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Interpreting p-values

p-value

Correct interpretation: Assuming that the null is true you would obtain
the observed difference or more in p% of studies due to random sampling
error.
Wrong interpretation: P-value is the probability of making a mistake by
rejecting a true null hypothesis.

• The p-value is calculated based on the assumption that the null is
true for the population, thus it cannot tell you the probability that the
null is true or false.

• A low p-value indicates that your data are unlikely assuming a true
null, but it cannot evaluate whether it is more likely that the low
p-value comes from the null being true but having an unlikely sample
or the null being false.
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An example

The MEAP93 data contains observations on 408 school districts on
average teacher salary in thousands of dollars (sal) and the percentage of
students passing the MEAP math. A regression gives the following output:

ˆmath10 = 8.28
(3.22)

+ 0.498sal
(0.10)

• The constant term is 8.28 with a standard error of 3.22

• The slope parameter is 0.498 with a standard error of 0.1
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An example

ˆmath10 = 8.28
(3.22)

+ 0.498sal
(0.10)

t =
0.498− 0

0.10
= 4.98

p − value = 2φ(−4.98) < 0.00001

• The 5% critical value is given by: tc406 = 1.96

• We can reject the null that salary does not affect the percentage of
students passing the math10.
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An example

The stata output for the same regression shows the same conclusion.

  Thursday January 29 18:11:48 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg math10 sal

      Source        SS       df       MS              Number of obs =      408
           F(  1,   406) =    24.62

       Model   2562.57022     1  2562.57022           Prob > F      =  0.0000
    Residual   42254.6103   406  104.075395           R-squared     =  0.0572

           Adj R-squared =  0.0549
       Total   44817.1805   407  110.115923           Root MSE      =  10.202

      math10       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

         sal    .4980309   .1003674     4.96   0.000     .3007264    .6953355
       _cons    8.282175   3.228869     2.57   0.011     1.934787    14.62956
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Economic versus statistical significance

• The statistical significance of a variable is determined entirely by the
size of the computed t-statistic.

• A coefficient can be statistically significant either because the
coefficient is large, or because the standard error is small.

• With large samples parameters can be estimated very precisely which
usually results in statistical significance.

• The economic significance is related to the size (and sign) of β̂1.

• Thus you should also discuss whether the coefficient is economically
important (i.e. the magnitude of the coefficient)
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Confidence intervals
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Confidence interval

Confidence interval

A confidence interval is a rule used to construct a random interval so that
a certain percentage of all data sets, determined by the confidence level,
yields an interval that contains the population value.

Confidence level

The percentage of samples in which we want our confidence interval to
contain the population value.
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Confidence interval

Two equivalent definitions of confidence interval:

• A 95% CI is the set of values that cannot be rejected using a
two-sided hypothesis test with a 5% significance level.

• An interval that has a 95% probability of containing the true value of
β1. In 95% of possible samples that can be drawn the confidence
interval will contain the true value of β1.
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Confidence interval of β̂1

• The t-statistic will reject the hypothesized value , β0,1, (at a 5%
level) whenever it is outside the range:

β̂1 ± 1.96SE (β̂1)
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Example

ˆmath10 = 8.28
(3.22)

+ 0.498salary
(0.10)

Confidence interval for βsalary

0.498− 1.96 ∗ 0.10 = 0.302

0.498 + 1.96 ∗ 0.10 = 0.694
  Thursday January 29 18:11:48 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg math10 sal

      Source        SS       df       MS              Number of obs =      408
           F(  1,   406) =    24.62

       Model   2562.57022     1  2562.57022           Prob > F      =  0.0000
    Residual   42254.6103   406  104.075395           R-squared     =  0.0572

           Adj R-squared =  0.0549
       Total   44817.1805   407  110.115923           Root MSE      =  10.202

      math10       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

         sal    .4980309   .1003674     4.96   0.000     .3007264    .6953355
       _cons    8.282175   3.228869     2.57   0.011     1.934787    14.62956
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Illustration CI intervals
Simulated confidence intervals for 50 samples each with a mean of 50 and
standard deviation of 10.
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Confidence interval

• The confidence interval can be used to construct a confidence interval
for the predicted effect of a general change in X.

• The 95% confidence interval for β1∆X

[(β̂1 − 1.96β̂1)∆X , (β̂1 + 1.96β̂1)∆X ]
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When X is binary
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Regression when X is a binary variable

• A lot of information relevant for econometric analysis is qualitative.

• This information can be summarized with one or multiple binary
variables.

• In econometrics binary variables are typically called dummy variables.

• In defining a dummy variable we must decide which event is assigned
the value one and which is assigned the value 0.

• The name typically indicates the event with value one.
• Female (1=female, 0=male)
• Higher educ (1=college or more, 0=less than college)
• Public transport (1=use public transport to work, 0=do not use public

transport)
• Drug (1=received the drug, 0= received placebo)
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Regression when X is a binary variable

The population regression model with the binary variable Di (D=1 if
female, D=0 if male) is:

Yi = β0 + β1Di + ui

when i is a male (D=0) we get:

Yi = β0 + ui → E (Yi |D = 0) = β0

while if i is a female (D=1) we get:

Yi = β0 + β1 + ui → E (Yi |D = 1) = β0 + β1

Thus β1 = E (Yi |Female)− E (Yi |male)
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Dummy variables

• The group with an indicator of 1 is the base group, the group against
which comparisons are made.

• It does not matter how we choose the base group, but it is important
to keep track of who is the base group.

• If two population means are the same then β1 is zero.
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Example
Data from additional E4.1

• Data from on average hourly earnings from a sample of full-time
workers.

• Female = 1 the person is female, female = 0 the person is male.

  Thursday January 29 19:07:55 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg ahe female

      Source        SS       df       MS              Number of obs =     7711
           F(  1,  7709) =   129.46

       Model   13091.0876     1  13091.0876           Prob > F      =  0.0000
    Residual   779560.368  7709   101.12341           R-squared     =  0.0165

           Adj R-squared =  0.0164
       Total   792651.456  7710   102.80823           Root MSE      =  10.056

         ahe       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

      female   -2.629912   .2311422   -11.38   0.000    -3.083013    -2.17681
       _cons    20.11387   .1520326   132.30   0.000     19.81584    20.41189

• The computed t statistic is higher than the 5% critical value (1.96)
• The p-value is lower than 0.05

β1 and is statistically significant at a 5% level and since it is negative it
indicates that women earn less than men.
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Proportions and percentages as dependent variables

• The proportional change is the change in a variable relative to its
initial value, mathematically, the change divided by the initial value.

• The percentage change is the proportionate change in a variable,
multiplied by 100.

• The percentage point change is the difference between two
percentages.
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Proportions and percentages as dependent variables

In a dataset on CEO’s where y is annual salary in thousands of dollars and
X is the average return on equity (roe) the following OLS regression line
can be obtained:

salary = β0 + β1roe + u

• ROE is defined in terms of net income as a percentage of common
equity, thus if roe=10, the average return on equity is 10%.

• The slope parameter β1 measures the change in annual salary, in
thousands of dollars, when return on equity increase by one
percentage point.
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Homoskedasticity

The dummy variable example can shed light on what is meant by
homoskedasticity:

• The definition of homoskedasticity requires the error term to be
independent of X, i.e it must not depend on female in our example.

• For women the error term (ui ) is the deviation of the i th woman’s
earning from the population mean earnings for women.

• For men the error term (ui ) is the deviation of the i th man’s earning
from the population mean earnings for men.

• Thus the variance of earnings must be the same for men as it is for
women.
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Homoskedasticity

Is the assumption realistic?

• Highly paid women are more rare than highly paid men suggesting
that the distribution of earnings among women is tighter than among
men.

• It is plausible that the variance of the error term for women is less
than the one for men.

• Stata makes it easy to control for heteroskedasticity and nothing is
lost by using the heteroskedasticity robust standard errors, thus
always using the robust ones is the best thing.
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Homoskedasticity
Homoskedasticity assumption:

  Thursday January 29 19:07:55 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg ahe female

      Source        SS       df       MS              Number of obs =     7711
           F(  1,  7709) =   129.46

       Model   13091.0876     1  13091.0876           Prob > F      =  0.0000
    Residual   779560.368  7709   101.12341           R-squared     =  0.0165

           Adj R-squared =  0.0164
       Total   792651.456  7710   102.80823           Root MSE      =  10.056

         ahe       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

      female   -2.629912   .2311422   -11.38   0.000    -3.083013    -2.17681
       _cons    20.11387   .1520326   132.30   0.000     19.81584    20.41189

Heteroskedasticity robust:
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                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg ahe female, robust

Linear regression                                      Number of obs =     7711
                                                       F(  1,  7709) =   134.80
                                                       Prob > F      =  0.0000
                                                       R-squared     =  0.0165
                                                       Root MSE      =  10.056

                            Robust
         ahe       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

      female   -2.629912   .2265122   -11.61   0.000    -3.073937   -2.185886
       _cons    20.11387   .1614226   124.60   0.000     19.79744     20.4303
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Implication of heteroskedasticity

• If the regression errors are homoskedastic and normally distributed
and if the homoskedasticity-only t-statistics is used, then critical
values should be taken from the Student t distribution.

• In econometric applications the errors are rarely homoskedastic and
normally distributed, but as long as n is large and we compute
heteroskedasticity robust standard errors we can compute t-statistics
and hence p-values and confidence intervals as normal.
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Prediction
  Thursday January 29 10:27:18 2015   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . reg ahe age

      Source        SS       df       MS              Number of obs =     7711
           F(  1,  7709) =   230.43

       Model   23005.7375     1  23005.7375           Prob > F      =  0.0000
    Residual   769645.718  7709  99.8372964           R-squared     =  0.0290

           Adj R-squared =  0.0289
       Total   792651.456  7710   102.80823           Root MSE      =  9.9919

         ahe       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

         age    .6049863   .0398542    15.18   0.000     .5268613    .6831113
       _cons    1.082275   1.184255     0.91   0.361    -1.239187    3.403737

The regression result gives:

Ŷ = 1.08 + 0.60age

Predictions:

• A 26 year old worker is predicted to have an average hourly wage of:
$ 16.68 (1.08+0.6*26).

• For each year of education you are predicted to earn $ 0.6 more.
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Note of caution:

• The test statistic: The t-value and hence the p-value and confidence
interval is only as good as the underlying assumptions used to
construct it.

• If any of the underlying assumptions are violated the test statistic is
not reliable.

• Most often the violated assumption is the zero conditional mean
assumption, X is often correlated with the error term.

• More about this in the next lecture when we talk about omitted
variable bias.
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