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Lecture Outline

• The linear probability model

• Nonlinear probability models

• Probit
• Logit

• Brief introduction of maximum likelihood estimation

• Interpretation of coefficients in logit and probit models
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Introduction

• So far the dependent variable (Y ) has been continuous:

• average hourly earnings

• traffic fatality rate

• What if Y is binary?

• Y = get into college, or not; X = parental income.

• Y = person smokes, or not; X = cigarette tax rate, income.

• Y = mortgage application is accepted, or not; X = race, income,
house characteristics, marital status ...
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The linear probability model

• Multiple regression model with continuous dependent variable

Yi = β0 + β1X1i + · · ·+ βk Xki + ui

• The coefficient βj can be interpreted as the change in Y associated with
a unit change in Xj

• We will now discuss the case with a binary dependent variable

• We know that the expected value of a binary variable Y is

E [Y ] = 1 · Pr(Y = 1) + 0 · Pr(Y = 0) = Pr(Y = 1)

• In the multiple regression model with a binary dependent variable we
have

E [Yi |X1i , · · · ,Xki ] = Pr(Yi = 1|X1i , · · · ,Xki )

• It is therefore called the linear probability model.
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Mortgage applications

Example:

• Most individuals who want to buy a house apply for a mortgage at a
bank.

• Not all mortgage applications are approved.

• What determines whether or not a mortgage application is approved or
denied?

• During this lecture we use a subset of the Boston HMDA data
(N = 2380)

• a data set on mortgage applications collected by the Federal
Reserve Bank in Boston

Variable Description Mean SD

deny = 1if mortgage application is denied 0.120 0.325
pi_ratio anticipated monthly loan payments / monthly income 0.331 0.107
black = 1if applicant is black, = 0 if applicant is white 0.142 0.350
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Mortgage applications

• Does the payment to income ratio affect whether or not a mortgage
application is denied?

  Tuesday February 18 15:46:21 2014   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . regress deny pi_ratio, robust

Linear regression                                      Number of obs =     2380
                                                       F(  1,  2378) =    37.56
                                                       Prob > F      =  0.0000
                                                       R-squared     =  0.0397
                                                       Root MSE      =  .31828

                            Robust
        deny       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

    pi_ratio    .6035349   .0984826     6.13   0.000     .4104144    .7966555
       _cons   -.0799096   .0319666    -2.50   0.012    -.1425949   -.0172243

• The estimated OLS coefficient on the payment to income ratio equals
β̂1 = 0.60.

• The estimated coefficient is significantly different from 0 at a 1%
significance level.

• How should we interpret β̂1?
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The linear probability model

• The conditional expectation equals the probability that Yi = 1 conditional
on X1i , · · · ,Xki :

E [Yi |X1i , · · · ,Xki ] = Pr(Yi = 1|X1i , · · · ,Xki ) = β0 + β1X1i + · · ·βk Xki

• The population coefficient βj equals the change in the probability that
Yi = 1 associated with a unit change in Xj .

∂Pr(Yi = 1|X1i , · · · ,Xki )

∂Xj
= βj

In the mortgage application example:

• β̂1 = 0.60

• A change in the payment to income ratio by 1 is estimated to increase
the probability that the mortgage application is denied by 0.60.

• A change in the payment to income ratio by 0.10 is estimated to increase
the probability that the application is denied by 6% (0.10*0.60*100).



8

The linear probability model

Assumptions are the same as for general multiple regression model:

1 E(ui |X1i ,X2i , . . . ,Xki ) = 0

2 (X1i , . . . ,Xki ,Yi ) are i.i.d.

3 Big outliers are unlikely

4 No perfect multicollinearity.

Advantages of the linear probability model:

• Easy to estimate
• Coefficient estimates are easy to interpret

Disadvantages of the linear probability model

• Predicted probability can be above 1 or below 0!
• Error terms are heteroskedastic
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The linear probability model: heteroskedasticity

Yi = β0 + β1X1i + · · ·+ βk Xki + ui

• The variance of a Bernoulli random variable (CH 2 S&W):

Var(Y ) = Pr(Y = 1)× (1− Pr(Y = 1))

• We can use this to find the conditional variance of the error term

Var (ui |X1i , · · · ,Xki ) = Var (Yi − (β0 + β1X1i + · · ·βk Xki )| X1i , · · · ,Xki )

= Var (Yi | X1i , · · · ,Xki )

= Pr (Yi = 1| X1i , · · · ,Xki )× (1− Pr (Yi = 1| X1i , · · · ,Xki ))

= (β0 + β1X1i + · · ·+ βk Xki )× (1− β0 − β1X1i − · · · − βk Xki )

6= σ2
u

• Solution: Always use heteroskedasticity robust standard errors when
estimating a linear probability model!
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The linear probability model: shortcomings

In the linear probability model the predicted probability can be below 0 or
above 1!

Copyright © 2011 Pearson Addison-Wesley. All rights reserved.     11-8

Example: linear probability model, HMDA data
Mortgage denial v. ratio of debt payments to income
(P/I ratio) in a subset of the HMDA data set (n = 127)
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Nonlinear probability models

• Probabilities cannot be less than 0 or greater than 1

• To address this problem we will consider nonlinear probability models

Pr(Yi = 1) = G (Z )

with Z = β0 + β1X1i + · · ·+ βk Xki

and 0 ≤ G (Z ) ≤ 1

• We will consider 2 nonlinear functions

1 Probit
G(Z ) = Φ (Z )

2 Logit

G (Z ) =
1

1 + e−Z
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Probit

Probit regression models the probability that Y = 1

• Using the cumulative standard normal distribution function Φ(Z )

• evaluated at Z = β0 + β1X1i + · · ·+ βk Xki

• since Φ(z) = Pr(Z ≤ z) we have that the predicted probabilities of the
probit model are between 0 and 1

Example

• Suppose we have only 1 regressor and Z = −2 + 3X1

• We want to know the probability that Y = 1 when X1 = 0.4

• z = −2 + 3 · 0.4 = −0.8

• Pr(Y = 1) = Pr(Z ≤ −0.8) = Φ(−0.8)
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Probit

Page 791 in the book:

Copyright © 2011 Pearson Addison-Wesley. All rights reserved.     11-15
Pr(z ≤ -0.8) = .2119Pr(Y = 1) = Pr(Z ≤ −0.8) = Φ(−0.8) = 0.2119
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Logit

Logit regression models the probability that Y = 1

• Using the cumulative standard logistic distribution function

F (Z ) =
1

1 + e−Z

• evaluated at Z = β0 + β1X1i + · · ·+ βk Xki

• since F (z) = Pr(Z ≤ z) we have that the predicted probabilities of the
probit model are between 0 and 1

Example

• Suppose we have only 1 regressor and Z = −2 + 3X1

• We want to know the probability that Y = 1 when X1 = 0.4

• z = −2 + 3 · 0.4 = −0.8

• Pr(Y = 1) = Pr(Z ≤ −0.8) = F (−0.8)
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Logit

Area = Pr(Z <= -0.8)
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Logit & probit
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How to estimate logit and probit models

• In lecture 11 we discussed regression models that are nonlinear in the
independent variables

• these models can be estimated by OLS

• Logit and Probit models are nonlinear in the coefficients β0, β1, · · · , βk

• these models can’t be estimated by OLS

• The method used to estimate logit and probit models is Maximum
Likelihood Estimation (MLE).

• The MLE are the values of (β0, β1, · · · , βk ) that best describe the full
distribution of the data.
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Maximum likelihood estimation

• The likelihood function is the joint probability distribution of the data,
treated as a function of the unknown coefficients.

• The maximum likelihood estimator (MLE) are the values of the
coefficients that maximize the likelihood function.

• MLE’s are the parameter values “most likely” to have produced the data.

Lets start with a special case: The MLE with no X

• We have n i.i.d. observations Y1, . . . ,Yn on a binary dependent variable

• Y is a Bernoulli random variable

• There is only 1 unknown parameter to estimate:

• The probability p that Y = 1,

• which is also the mean of Y
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Maximum likelihood estimation

Step 1: write down the likelihood function, the joint probability
distribution of the data

• Yi is a Bernoulli random variable we therefore have

Pr(Yi = y) = Pr(Yi = 1)y · (1− Pr(Yi = 1))1−y = py (1− p)1−y

• Pr(Yi = 1) = p1(1− p)0 = p
• Pr(Yi = 0) = p0(1− p)1 = 1− p

• Y1, . . . ,Yn are i.i.d, the joint probability distribution is therefore the
product of the individual distributions

Pr(Y1 = y1, . . . .Yn = yn) = Pr(Y1 = y1)× . . .× Pr(Yn = yn)

=
[
py1 (1− p)1−y1

]
× . . .×

[
pyn (1− p)1−yn

]
= p(y1+y2+...+yn) (1− p)n−(y1+y2+...+yn)
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Maximum likelihood estimation

We have the likelihood function:

fBernouilli (p; Y1 = y1, . . . .Yn = yn) = p
∑

yi (1− p)n−
∑

yi

Step 2: Maximize the likelihood function w.r.t p

• Easier to maximize the logarithm of the likelihood function

ln (fBernouilli (p; Y1 = y1, . . . .Yn = yn)) =

(
n∑

i=1

yi

)
·ln (p)+

(
n −

n∑
i=1

yi

)
ln (1− p)

• Since the logarithm is a strictly increasing function, maximizing the
likelihood or the log likelihood will give the same estimator.
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Maximum likelihood estimation

• Taking the derivative w.r.t p gives

d
dp

ln (fBernouilli (p; Y1 = y1, . . . .Yn = yn)) =

∑n
i=1 yi

p
−

n −
∑n

i=1 yi

1− p

• Setting to zero and rearranging gives

(1− p)×
∑n

i=1 yi = p × (n −
∑n

i=1 yi )∑n
i=1 yi − p

∑n
i=1 yi = n · p − p

∑n
i=1 yi∑n

i=1 yi = n · p

• Solving for p gives the MLE

p̂MLE =
1
n

n∑
i=1

yi = Y
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MLE of the probit model

Step 1: write down the likelihood function

Pr(Y1 = y1, . . . .Yn = yn) = Pr(Y1 = y1)× . . .× Pr(Yn = yn)

=
[
py1

1 (1− p1)1−y1
]
× . . .×

[
pyn

n (1− pn)1−yn
]

• so far it is very similar as the case without explanatory variables except
that pi depends on X1i , . . . ,Xki

pi = Φ (X1i , . . . ,Xki ) = Φ (β0 + β1X1i + · · ·+ βk Xki )

• substituting for pi gives the likelihood function:[
Φ (β0 + β1X11 + · · ·+ βk Xk1)y1 (1− Φ (β0 + β1X11 + · · ·+ βk Xk1))1−y1

]
× . . .

×
[
Φ (β0 + β1X1n + · · ·+ βk Xkn)yn (1− Φ (β0 + β1X1n + · · ·+ βk Xkn))1−yn

]
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MLE of the probit model

Also with obtaining the MLE of the probit model it is easier to take the
logarithm of the likelihood function

Step 2: Maximize the log likelihood function

ln [fprobit (β0, . . . , βk ; Y1, . . . ,Yn| X1i , . . . ,Xki , i = 1, . . . , n)]

=
∑n

i=1 Yi ln [Φ (β0 + β1X1i + · · ·+ βk Xki )]

+
∑n

i=1(1− Yi )ln [1− Φ (β0 + β1X1i + · · ·+ βk Xki )]

w.r.t β0, . . . , β1

• There is no simple formula for the probit MLE, the maximization must be
done using numerical algorithm on a computer.
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MLE of the logit model

Step 1: write down the likelihood function

Pr(Y1 = y1, . . . .Yn = yn) =
[
py1

1 (1− p1)1−y1
]
× . . .×

[
pyn

n (1− pn)1−yn
]

• very similar to the Probit model but with a different function for pi

pi = 1/
[
1 + e−(β0+β1X1i+...+βk Xki )

]

Step 2: Maximize the log likelihood function w.r.t β0, . . . , β1

ln [flogit (β0, . . . , βk ; Y1, . . . ,Yn| X1i , . . . ,Xki , i = 1, . . . , n)]

=
∑n

i=1 Yi ln
(

1/
[
1 + e−(β0+β1X1i+...+βk Xki )

])
+
∑n

i=1(1− Yi )ln
(

1−
(

1/
[
1 + e−(β0+β1X1i+...+βk Xki )

]))
• There is no simple formula for the logit MLE, the maximization must be

done using numerical algorithm on a computer.
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Probit: mortgage applications

  Wednesday February 19 16:06:55 2014   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . probit deny pi_ratio

Iteration 0:   log likelihood =  -872.0853  
Iteration 1:   log likelihood = -832.02975  
Iteration 2:   log likelihood = -831.79239  
Iteration 3:   log likelihood = -831.79234  

Probit regression                                 Number of obs   =       2380
                                                  LR chi2( 1)      =      80.59
                                                  Prob > chi2     =     0.0000
Log likelihood = -831.79234                       Pseudo R2       =     0.0462

        deny       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

    pi_ratio    2.967907   .3591054     8.26   0.000     2.264073     3.67174
       _cons   -2.194159     .12899   -17.01   0.000    -2.446974   -1.941343

• The estimated MLE coefficient on the payment to income ratio equals
β̂1 = 2.97.

• The estimated coefficient is positive and significantly different from 0 at
a 1% significance level.

• How should we interpret β̂1?
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Probit: mortgage applications

The estimate of β1 in the probit model CANNOT be interpreted as the change
in the probability that Yi = 1 associated with a unit change in X1!!

• In general the effect on Y of a change in X is the expected change in Y
resulting from the change in X

• Since Y is binary the expected change in Y is the change in the
probability that Y = 1

In the probit model the predicted change the probability that the mortgage
application is denied when the payment to income ratio increases from

0.10 to 0.20:

̂4Pr(Yi = 1) = Φ (−2.19 + 2.97 · 0.20)− Φ (−2.19 + 2.97 · 0.10) = 0.0495

0.30 to 0.40:

̂4Pr(Yi = 1) = Φ (−2.19 + 2.97 · 0.40)− Φ (−2.19 + 2.97 · 0.30) = 0.0619
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Probit: mortgage applications

Predicted values in the probit model:

Copyright © 2011 Pearson Addison-Wesley. All rights reserved.     11-13

• The probit model satisfies these conditions:
I. Pr(Y = 1|X) to be increasing in X for β1>0, and
II. 0 ≤ Pr(Y = 1|X) ≤ 1 for all X

• All predicted probabilities are between 0 and 1!
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Logit: mortgage applications

  Wednesday February 19 16:37:45 2014   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . logit deny pi_ratio

Iteration 0:   log likelihood =  -872.0853  
Iteration 1:   log likelihood = -830.96071  
Iteration 2:   log likelihood = -830.09497  
Iteration 3:   log likelihood = -830.09403  
Iteration 4:   log likelihood = -830.09403  

Logistic regression                               Number of obs   =       2380
                                                  LR chi2( 1)      =      83.98
                                                  Prob > chi2     =     0.0000
Log likelihood = -830.09403                       Pseudo R2       =     0.0482

        deny       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

    pi_ratio    5.884498   .7336006     8.02   0.000     4.446667    7.322328
       _cons   -4.028432   .2685763   -15.00   0.000    -4.554832   -3.502032

• The estimated MLE coefficient on the payment to income ratio equals
β̂1 = 5.88.

• The estimated coefficient is positive and significantly different from 0 at
a 1% significance level.

• How should we interpret β̂1?
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Logit: mortgage applications

Also in the Logit model:

The estimate of β1 CANNOT be interpreted as the change in the probability
that Yi = 1 associated with a unit change in X1!!

In the logit model the predicted change the probability that the mortgage
application is denied when the payment to income ratio increases from

0.10 to 0.20:

̂4Pr(Yi = 1) =
(

1/1 + e−(−4.03+5.88·0.20)
)
−
(

1/1 + e−(−4.03+5.88·0.10)
)

= 0.023

0.30 to 0.40:

̂4Pr(Yi = 1) =
(

1/1 + e−(−4.03+5.88·0.40)
)
−
(

1/1 + e−(−4.03+5.88·0.30)
)

= 0.063
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Logit: mortgage applications

Copyright © 2011 Pearson Addison-Wesley. All rights reserved.     11-26

The predicted probabilities from the probit and logit 
models are very close in these HMDA regressions: 
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Probit & Logit with multiple regressors

• We can easily extend the Logit and Probit regression models, by
including additional regressors

• Suppose we want to know whether white and black applications are
treated differentially

• Is there a significant difference in the probability of denial between black
and white applicants conditional on the payment to income ratio?

• To answer this question we need to include two regressors

• P/I ratio

• Black
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Probit with multiple regressors

  Thursday February 20 15:09:45 2014   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . probit deny black pi_ratio

Iteration 0:   log likelihood =  -872.0853  
Iteration 1:   log likelihood = -800.88504  
Iteration 2:   log likelihood =  -797.1478  
Iteration 3:   log likelihood = -797.13604  
Iteration 4:   log likelihood = -797.13604  

Probit regression                                 Number of obs   =       2380
                                                  LR chi2( 2)      =     149.90
                                                  Prob > chi2     =     0.0000
Log likelihood = -797.13604                       Pseudo R2       =     0.0859

        deny       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

       black    .7081579   .0834327     8.49   0.000     .5446328    .8716831
    pi_ratio    2.741637   .3595888     7.62   0.000     2.036856    3.446418
       _cons   -2.258738    .129882   -17.39   0.000    -2.513302   -2.004174

• To say something about the size of the impact of race we need to
specify a value for the payment to income ratio

• Predicted denial probability for a white application with a P/I-ratio of 0.3
is

Φ(−2.26 + 0.71 · 0 + 2.74 · 0.3) = 0.0749

• Predicted denial probability for a black application with a P/I-ratio of 0.3
is

Φ(−2.26 + 0.71 · 1 + 2.74 · 0.3) = 0.2327

• Difference is 15.8%
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Logit with multiple regressors

  Sunday March 23 14:14:06 2014   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . logit deny black pi_ratio

Iteration 0:   log likelihood =  -872.0853  
Iteration 1:   log likelihood =  -806.3571  
Iteration 2:   log likelihood = -795.72934  
Iteration 3:   log likelihood = -795.69521  
Iteration 4:   log likelihood = -795.69521  

Logistic regression                               Number of obs   =       2380
                                                  LR chi2( 2)      =     152.78
                                                  Prob > chi2     =     0.0000
Log likelihood = -795.69521                       Pseudo R2       =     0.0876

        deny       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

       black    1.272782   .1461983     8.71   0.000     .9862385    1.559325
    pi_ratio    5.370362   .7283192     7.37   0.000     3.942883    6.797841
       _cons   -4.125558   .2684161   -15.37   0.000    -4.651644   -3.599472

• To say something about the size of the impact of race we need to
specify a value for the payment to income ratio

• Predicted denial probability for a white application with a P/I-ratio of 0.3
is

1/1 + e−(−4.13+5.37·0.30) = 0.075

• Predicted denial probability for a black application with a P/I-ratio of 0.3
is

1/1 + e−(−4.13+5.37·0.30+1.27) = 0.224

• Difference is 14.8%
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LPM, Probit & Logit

1

Table 1: Mortgage denial regression using the Boston HMDA Data

Dependent variable: deny = 1 if mortgage application is denied, = 0 if accepted

regression model LPM Probit Logit

black 0.177*** 0.71*** 1.27***
(0.025) (0.083) (0.15)

P/I ratio 0.559*** 2.74*** 5.37***
(0.089) (0.44) (0.96)

constant -0.091*** -2.26*** -4.13***
(0.029) (0.16) (0.35)

di�erence Pr(deny=1) between black 17.7% 15.8% 14.8%
and white applicant when P/I ratio=0.3
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Threats to internal and external validity

Both for the Linear Probability as for the Probit & Logit models we have to
consider threats to

1 Internal validity

• Is there omitted variable bias?

• Is the functional form correct?

• Probit model: is assumption of a Normal distribution correct?
• Logit model: is assumption of a Logistic distribution correct?

• Is there measurement error?

• Is there sample selection bias?

• is there a problem of simultaneous causality?

2 External validity

• These data are from Boston in 1990-91.

• Do you think the results also apply today, where you live?
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Distance to college & probability of obtaining a college degree

  Sunday March 23 14:37:45 2014   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

Linear regression                                      Number of obs =     3796
                                                       F(  1,  3794) =    15.77
                                                       Prob > F      =  0.0001
                                                       R-squared     =  0.0036
                                                       Root MSE      =  .44302

                            Robust
     college       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

        dist    -.012471   .0031403    -3.97   0.000    -.0186278   -.0063142
       _cons    .2910057   .0093045    31.28   0.000     .2727633    .3092481

  Sunday March 23 14:38:21 2014   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

Probit regression                                 Number of obs   =       3796
                                                  LR chi2( 1)      =      14.48
                                                  Prob > chi2     =     0.0001
Log likelihood = -2204.8977                       Pseudo R2       =     0.0033

     college       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

        dist   -.0407873   .0109263    -3.73   0.000    -.0622025   -.0193721
       _cons   -.5464198    .028192   -19.38   0.000    -.6016752   -.4911645

  Sunday March 23 14:38:55 2014   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

Logistic regression                               Number of obs   =       3796
                                                  LR chi2( 1)      =      14.68
                                                  Prob > chi2     =     0.0001
Log likelihood = -2204.8006                       Pseudo R2       =     0.0033

     college       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

        dist   -.0709896   .0193593    -3.67   0.000    -.1089332    -.033046
       _cons   -.8801555   .0476434   -18.47   0.000    -.9735349    -.786776
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Distance to college & probability of obtaining a college degree
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• The 3 different models produce very similar results.



38

Summary

• If Yi is binary, then E(Yi |Xi ) = Pr(Yi = 1|Xi )

• Three models:

1 linear probability model (linear multiple regression)

2 probit (cumulative standard normal distribution)

3 logit (cumulative standard logistic distribution)

• LPM, probit, logit all produce predicted probabilities

• Effect of 4X is a change in conditional probability that Y = 1

• For logit and probit, this depends on the initial X

• Probit and logit are estimated via maximum likelihood

• Coefficients are normally distributed for large n
• Large-n hypothesis testing, conf. intervals is as usual


