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Lecture outline

• What are quasi-experiments?

• Difference-in-differences

• Using quasi-experimental variation as instrument

• Heterogeneous effects in (quasi-)experiments

• Heterogeneous effects & OLS

• Heterogeneous effects & 2SLS

• Regression discontinuity design
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Terminology: experiments and quasi-experiments

Previous lecture we discussed:

Experiments: designed and implemented consciously by human
researchers.

• An experiment randomly assigns subjects to treatment
and control groups (think of clinical drug trials)

This week we will discuss:

Quasi-experiments or natural experiments have a source of randomization
that is “as if” randomly assigned.

• This variation was however not the result of an explicit
randomized treatment and control design.
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Different Types of Quasi Experiments

There are 2 types of quasi experiments

1 Whether an an individual (entity) receives treatment is “as if” randomly
assigned, possible conditional on certain characteristics

• For example a new policy measure that is implemented in one but
not in another area, whereby the implementation is “as” if randomly
assigned.

2 Whether an an individual (entity) receives treatment is partially
determined by another variable that is “as if” randomly assigned.

• The variable that is “as if” randomly assigned can then be used as
an instrumental variable in a 2SLS regression analysis.
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Quasi experiment with conditional “as if” randomization

• If the treatment in a quasi-experiment is “as if” randomly assigned,
conditional on observed characteristics W ....

• ....we can estimate the treatment effect by OLS while including W as
control variable.

• This is similar as with an experiment with conditional randomization.

• We can obtain an unbiased effect of the treatment based on the
conditional mean independence assumption...

• ...by estimating the following equation by OLS

Yi = β0 + β1Xi + β2Wi + ui with E [ui |Xi ,Wi ] = E [ui |Wi ]
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Difference-in-Differences (DiD)

• What if the treatment in a quasi-experiment is “as if” randomly assigned,
conditional on unobserved characteristics?

• If these differences in unobserved characteristics are time-invariant,...

• ...and we observe outcomes for the treatment & control group before &
after the treatment ...

• ... we can use a method called difference-in-differences
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DID: two groups & two time periods

• Two groups: treatment group (g = Tr ) and control group (g = C)
• Two time periods: Before (t = 0) and after (t = 1)
• Potential outcomes:

Yigt(1) outcome for entity i in group g in period t in case of treatment

Yigt(0) outcome for entity i in group g in period t in case of no treatment

• We assume additive structure for mean potential outcome in case of no
treatment (heart of dif-in-dif set-up):

E [Yigt(0)] = αg + λt

• αg= time-invariant group effect
• λt= time effect which is constant across groups
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DID: two groups & two time periods

• A treatment takes place in treatment group but not in control group

• Suppose we observe outcomes before (t = 0) and after (t = 1) the
treatment (panel data)

• Let the treatment indicator Xgt :

• equal 1 for treatment group (g = Tr ) in the second period (t = 1)
• equal 0 otherwise

• We can write the observed outcome as a function of the potential
outcomes

Yigt = Yigt (1) · Xgt + Yigt (0) · (1− Xgt)

• Taking expectations and rewriting gives

E [Yigt ] = E [Yigt (1)− Yigt (0)] · Xgt + E [Yigt (0)]

= βXgt + αg + λt

With the average causal effect of the treatment: E [Yigt(1)− Yigt(0)] = β
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DID: two groups & two time periods

E [Yigt ] = β · Xgt + αg + λt

Before (t = 0) After (t = 1)

Treatment group (g = Tr ) E [Yi Tr 0] = αTr + λ0 E [Yi Tr 1] = β + αTr + λ1
control group (g = C) E [Yi C 0] = αC + λ0 E [Yi C 1] = αC + λ1

• Comparing outcomes for treated and controls after intervention:

E [Yi Tr 1]− E [Yi C 1] = β + (αTr − αC)

• Comparing outcomes for treated before and after treatment:

E [Yi Tr 1]− E [Yi Tr 0] = β + (λ1 − λ2)

• Instead subtract change for controls from change for treated:

DID = (E [Yi Tr 1]− E [Yi Tr 0])− (E [Yi C 1]− E [Yi C 0])

= ((β + αTr + λ1)− (αTr + λ0))− ((αC + λ1)− (αC + λ0))

= (β + λ1 − λ0)− (λ1 − λ0)

= β
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DID: two groups & two time periods

 

 λ1‐λ0 αTr‐αC 

β 

E[Yi C 0] 

E[Yi Tr 0]  E[Yi C 1] 

E[Yi Tr 1] 

t=0  t=1 

Common trend assumption: In absence of intervention, the treatment
group would have had the same trend in Y as the control group.
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DID: two groups & two time periods
Example: Card & Krueger (AER, 1994)

• What is the effect of increase in minimum wage on employment?

• Prediction economic theory: a rise in the minimum wage leads perfectly
competitive employers to cut employment.

• Card and Krueger investigate effect of increase in minimum wage from
$4.25 to $ 5.05 in New Jersey on April 1, 1992.

• Data on 410 fast-food restaurants (Burger King, Wendy’s,...):

• in New Jersey (treatment group)

• and Pennsylvania (control group)

• in February/March 1992 (before)

• and in November/December 1992 (after)
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DID: two groups & two time periods
Example: Card & Krueger (AER, 1994)

Data on fast food restaurants:

  Thursday February 21 16:07:13 2013   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

  obs:            820                          
 vars:              3                          21 Feb 2013 16:06
 size:          7,380                          

              storage  display     value
variable name   type   format      label      variable label

state           byte   %8.0g                  1 if New Jersey; 0 if Pennsylvania
employment      float  %9.0g                  employment (fte) in fast food restaurant
time            float  %9.0g                  0 if before, 1 if after

Sorted by:  

1 . sum

    Variable        Obs        Mean    Std. Dev.       Min        Max

       state        820    .8073171    .3946469          0          1
  employment        794    21.02651    9.422746          0         85
        time        820          .5    .5003052          0          1
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DID: two groups & two time periods
Example: Card & Krueger (AER, 1994)

Mean employment by state, time period:

  Thursday February 21 16:14:55 2013   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

-> state = Pennsylvania, time = before

    Variable        Obs        Mean    Std. Dev.       Min        Max

  employment         77    23.33117    11.85628        7.5       70.5

-> state = Pennsylvania, time = after

    Variable        Obs        Mean    Std. Dev.       Min        Max

  employment         77    21.16558    8.276732          0       43.5

-> state = NewJersey, time = before

    Variable        Obs        Mean    Std. Dev.       Min        Max

  employment        321    20.43941    9.106239          5         85

-> state = NewJersey, time = after

    Variable        Obs        Mean    Std. Dev.       Min        Max

  employment        319    21.02743    9.293024          0       60.5



14

DID: two groups & two time periods
Example: Card & Krueger (AER, 1994)

• Yigt is employment in restaurant i in state g at time t :

Before (t = 0) After (t = 1)

New Jersey (g = Tr ) ̂E [Yi Tr 0] = 20.44 ̂E [Yi Tr 1] = 21.03
Pennsylvania (g = C) ̂E [Yi C 0] = 23.33 ̂E [Yi C 1] = 21.17

• β̂DID = (21.03− 20.44)− (21.17− 23.33) = 2.75

• Counter-intuitive result: Employment increased as consequence of
increase in minimum wage

• Note: small change in NJ, but downward trend in PA

• Common trend assumption: In absence of intervention employment in
NJ would have had same downward trend as PA
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DiD: general set-up

• DID-estimator can be obtained by estimating this equation by OLS

Yigt = β0 + β1 · Xgt + β2Gi + β3Dt + uigt

• with Gi = 1 for the treatment group and 0 for the control group,

• Dt = 1 if after & Dt = 0 if before,

• and Xgt = Gi × Dt = 1 if treated and 0 otherwise

• If we observe outcomes at t = 0 & t = 1 for each i , we can also take first
differences:

Yig1 − Yig0 = (β0 − β0)− β1 · (Xg1 − Xg0) + β2(Gi − Gi ) + β3(D1 − D0) + (uig1 − uig0)

4Yig = β1Xg + β3 +4uig

• Main assumption: In absence of intervention treatment and control
groups would have common trends

E [uigt |Xgt ,Gi ,Dt ] = E [uigt |Gi ,Dt ] or E [4uig |Xg ] = 0
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DID: general set-up, two groups

• We don’t need panel data to apply difference-in-differences

• We can use repeated cross-sections to estimate

Yigt = β0 + β1 · Xgt + β2Gi + β3Dt + uigt

• Repeated cross-section: a collection of cross-sectional data sets, where
each cross-section corresponds to a different time period.

• Additional assumption: composition of treatment and control groups do
not change over time.

• Minimum wage example: you don’t need to observe exactly the same
fast food restaurants in t = 0 & t = 1 ...

• ....as long as the sample of restaurants in New Jersey & Pennsylvania at
t = 0 & t = 1 are random draws from the same population of fast food
restaurants.
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DID: general set-up, two groups
Example: Card & Krueger (AER, 1994)

Yigt = β0 + β1 · Xgt + β2Gi + β3Dt + uigt

  Monday April 7 10:41:48 2014   Page 1

                                                    ___  ____  ____  ____  ____(R)
                                                   /__    /   ____/   /   ____/   
                                                  ___/   /   /___/   /   /___/    
                                                    Statistics/Data Analysis      

1 . gen treatment= state* time

2 . regress employment treatment state time, robust

Linear regression                                      Number of obs =      794
                                                       F(  3,   790) =     1.40
                                                       Prob > F      =  0.2404
                                                       R-squared     =  0.0074
                                                       Root MSE      =  9.4056

                            Robust
  employment       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

   treatment    2.753606   1.795451     1.53   0.126    -.7708128    6.278024
       state   -2.891761   1.438696    -2.01   0.045     -5.71588    -.067642
        time   -2.165584   1.641212    -1.32   0.187    -5.387236    1.056067
       _cons    23.33117   1.345741    17.34   0.000     20.68952    25.97282
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Natural experiment: Draft eligibility, veteran status & earnings

• The increase in the minimum wage in New Jersey (but not Pennsylvania)
is an example whereby the treatment is “as if” randomly assigned

• We now turn to an example where the “as if” randomization partially
affects the treatment.

• Research question: Does serving in the military affect future earnings?

• Treatment of interest: veteran status

• Natural experiment: During the Vietnam War draft eligibility was
determined by a national lottery system based on birthdays

• men with a low lottery number were eligible to be drafted into the
military

• men with a high lottery number were not eligible to be drafted.
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Natural experiment: Draft eligibility, veteran status & earnings

• Serving in the military might have a positive effect on future earnings
(training)

• Serving in the military could also have a negative effect (psychological
problems/bad health)

• Estimating the effect of veteran status on earnings by OLS will likely give
a biased estimate, because veteran status is correlated with
(unobserved) individual characteristics.

• Draft lottery during Vietnam war randomly assigned draft eligibility.

• Draft eligibility partially determines actual military service.

• Angrist (AER, 1990) used the draft eligibility as an instrumental variable
to estimate the causal effect of veteran status on earnings.
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Natural experiment: Draft eligibility, veteran status & earnings

Sample of about 13500 men born in 1950

Yi = β0 + β1Xi + ui Xi = π0 + π1Zi + vi

• Yi is earnings observed in 1981

• Xi = 1 if served in the military and 0 if not

• Zi = 1 if individual was draft-eligible in 1970

• randomly assigned a low lottery number (below cut-off)

• Zi = 0 if individual was not draft-eligible in 1970

• randomly assigned high lottery number (above cut-off)
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Natural experiment: Draft eligibility, veteran status & earnings

Draft eligibility is a valid instrument if

Instrument exogeneity: Cov(Zi , ui) = 0

1 Independence: Draft eligibility is uncorrelated with unobserved
characteristics that affect earnings

• Draft eligibility was randomly assigned by a national lottery and
therefore uncorrelated with (unobserved) characteristics

2 Exclusion restriction: Draft eligibility does not have a direct effect on
earnings, only effect is via veteran status.

• Assumption might be violated if men with low draft lottery number
stayed in school longer to avoid being drafted.

Instrument Relevance: Cov(Zi ,Xi) 6= 0

• Draft eligibility should affect probability of serving in the military.

• Can be checked by running first stage regression & testing H0 : π1 = 0
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Natural experiment: Draft eligibility, veteran status & earnings

Yi = β0 + β1Xi + ui Xi = π0 + π1Zi + vi

First stage 2SLS

Dependent variable: Served in Military Earnings ($1000)

Served in military -2.741**
(1.324)

Eligible for draft (lottery nr. below cut-off) 0.159***
(0.040)

First stage F-statistic 15.80
Note: ** significant at 5% level, *** significant at 1% level
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The Wald estimator

There is an alternative way of computing the instrumental variable estimator:

• Recall the formula of the instrumental variable estimator

β̂IV =
1
n
∑n

i=1(Yi−Ȳ )(Zi−Z̄ )
1
n
∑n

i=1(Xi−X̄)(Zi−Z̄ )

=
1
n
∑n

i=1(Yi−Ȳ )(Zi−Z̄ )/ 1
n
∑n

i=1(Zi−Z̄ )2

1
n
∑n

i=1(Xi−X̄)(Zi−Z̄ )/ 1
n
∑n

i=1(Zi−Z̄ )2

=
SZY /S2

Z
SZX/S2

Z

• SZY
S2

Z
is the OLS estimator when regressing Yi on Zi

• SZX
S2

Z
is the OLS estimator when regressing Xi on Zi
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The Wald estimator

When the instrument Zi is binary:

• Estimating Yi = γ0 + γ1Zi + εi by OLS gives the following differences
estimator

γ̂1 =
SZY

S2
Z

= ̂E [Yi |Zi = 1]− ̂E [Yi |Zi = 0]

• Estimating Xi = π0 + π1Zi + ui by OLS gives the following differences
estimator

π̂1 =
SZX

S2
Z

= ̂E [Xi |Zi = 1]− ̂E [Xi |Zi = 0]

• We therefore have that the IV estimator equals the so called
Wald estimator

β̂IV =
SZY/S2

Z

SZX/S2
Z
=

̂E [Yi |Zi = 1]− ̂E [Yi |Zi = 0]
̂E [Xi |Zi = 1]− ̂E [Xi |Zi = 0]
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The Wald estimator

π̂1 γ̂1 Wald estimate

̂E [Xi |Zi = 1]− ̂E [Xi |Zi = 0] ̂E [Yi |Zi = 1]− ̂E [Yi |Zi = 0] β̂IV =
̂E [Yi |Zi =1]− ̂E [Yi |Zi =0]
̂E [Xi |Zi =1]− ̂E [Xi |Zi =0]

0.159 -0.436 -2.741
(0.040) (0.211) (1.324)

• −0.436
0.159 = −2.741

• Using a natural experiment, the draft lottery, as instrumental variable we
find that serving in the military reduces future earnings by 2741 dollar.

• Note: this is based on the assumption of a homogenous treatment
effect: βi1 = β1

• We assume that the effect of serving in the military on earnings is the
same for all men.
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Heterogeneous treatment effect & OLS

• When we write
Yi = β0 + β1Xi + ui

we assume that the effect of a unit change Xi equals β1 for all i .

• What if Yi = β0 + β1iXi + ui with β1i 6= β1

• If we have a (natural) experiment where the treatment Xi is (“as if”)
randomly assigned and we estimate the effect of Xi on Yi by OLS we get

β̂OLS = SYX
S2

X
−→ Cov(Yi ,Xi )

Var(Xi )
= Cov(β0+β1i Xi +ui ,Xi )

Var(Xi )

= Cov(β0,Xi )+Cov(β1i Xi ,Xi )+Cov(ui ,Xi )
Var(Xi )

= 0+E [β1i ]Cov(Xi ,Xi )+0
Var(Xi )

= E [β1i ]

• With heterogeneous effects OLS will give a consistent estimate of the
average treatment effect.
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Heterogeneous treatment effects & 2SLS

• If we estimate a 2SLS model with heterogeneous effects

Yi = β0 + β1iXi + ui with β1i 6= β1

Xi = π0 + π1iZi + vi with π1i 6= π1

the IV-estimator β̂IV will not be a consistent estimator of the average
treatment effect in the whole population.

• Instead the IV-estimator will be a consistent estimator of the

local average treatment effect (LATE): the average treatment effect in the
sub-population of those who are affected by the instrument.

Draft-lottery example: the average causal effect of military service on
earnings for men who complied with draft eligibility status is equal to
β̂IV = −2, 741 (dollars)

Compliers: men that would serve in the military if draft eligible but would not
serve if draft ineligible.
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Regression discontinuity design

Another example of a quasi-experiment is a (fuzzy) regression discontinuity
design:

• If treatment occurs when some continuous variable W crosses a
threshold w0, then you can estimate the treatment effect by comparing

• individuals with W just below the threshold (treated)

• individuals to these with W just above the threshold (untreated).

• If the direct effect on Y of W is continuous, the effect of treatment
should show up as a jump in the outcome.

• The magnitude of this jump estimates the treatment effect.
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Regression discontinuity design

Copyright © 2011 Pearson Addison-Wesley. All rights reserved.     13-44

Sharp regression discontinuity design in 
a picture: 
Treatment occurs for everyone with W < w0, and the 
treatment effect is the jump or “discontinuity.”
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Regression discontinuity design

Sharp regression discontinuity design: everyone on one side of the
threshold w0 gets treatment, those on the other side do not get the treatment.

• This is an example of a quasi experiment whereby the treatment is “as
if” randomly assigned conditional on W

• Treatment effect can be estimated by estimating equation below by OLS

Yi = β0 + β1Xi + β2Wi + ui

with Xi = 1 if W < w0 & Xi = 0 if W ≥ w0

• Assuming that the direct effect of Wi on Yi is linear and

E [ui |Xi ,Wi ] = E [ui |Wi ]
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Regression discontinuity design

Fuzzy regression discontinuity design: crossing the threshold w0

influences the probability of treatment, but that probability is between 0 and 1.

• This is an example of a quasi experiment whereby the treatment is
partially affected by “as if” randomization conditional on W

• Treatment effect can be estimated by using 2SLS

Yi = β0 + β1Xi + β2Wi + ui Xi = π0 + π1Zi + π2Wi + vi

with Zi = 1 if W < w0 & Zi = 0 if W ≥ w0

• Assuming that the direct effect of Wi on Yi is linear and

E [ui |Zi ,Wi ] = E [ui |Wi ]
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Quasi-experimental estimates of class size

• Angrist and Lavy (1999) use a fuzzy RD design based on the
interpretation of the Talmud by 12th century rabbinic scholar
Maimonides.

• According to Maimonides’ rule:

‘‘Twenty five children may be put in charge of one teacher. If
the number in the class exceeds twenty-five but is not more than
forty, he should have an assistant to help with the instruction. If
there are more than forty, two teachers must be appointed’’

• Since 1969 Maimonides’ rule is used to determine the division of
enrollment cohorts into classes in Israeli public schools

• Angrist and Lavy use this maximum class size rule as a source of
exogenous variation to estimate the effect class size on test scores in
elementary school.
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Quasi-experimental estimates of class size

• Angrist and Lavy link test score data with information on class size,
enrollment and other school characteristics

• They estimate the following specification by 2SLS

Ysc = β0 + β1Xsc + β2Ws + usc

Xsc = π0 + π1Zsc + π2Ws + vsc

Ysc is average test score in class c in school s

Xsc is the size of class c in school s

Ws is school enrollment

Zsc is predicted class size
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Quasi-experimental estimates of class size

• Predicted class size is based on Maimonides’ rule:

Zsc = Ws/ [int((Ws − 1)/40) + 1]

Zsc is predicted class size for school s

Ws is beginning-of-the-year enrollment for school s (for particular
grade)

int(n) denotes largest integer less than or equal to n

• Equation captures the fact that according to Maimonides’ rule

• enrollment cohorts of 1–40 should be grouped in a single class,

• enrollment cohorts of 41–80 should split into 2 classes of average
size 20.5–40,

• enrollment cohorts of 81–120 should be split into 3 classes of
average size 27–40, and so on.
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Quasi-experimental estimates of class size

one-quarter of the classes are of equal size. On the other hand,
even though the actual relationship between class size and
enrollment size involves many factors, in Israel it clearly has a lot
to do with fsc. This can be seen in Figures Ia and Ib, which plot the
average class size by enrollment size for fifth and fourth grade
pupils, along with the class-size function. The dashed horizontal

FIGURE I
Class Size in 1991 by Initial Enrollment Count, Actual Average Size and as

Predicted by Maimonides’ Rule
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Quasi-experimental estimates of class size

In addition to exhibiting a strong association with average
class size, the class-size function is also correlated with the
average test scores of fourth and fifth graders (although not third
graders). This can be seen in Figures IIa and IIb, which plot
average reading test scores and average values of fsc by enrollment
size, in enrollment intervals of ten. Figure IIa plots the scores of

FIGURE II
Average Reading Scores by Enrollment Count, and the Corresponding Average

Class Size Predicted by Maimonides’ Rule
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Quasi-experimental estimates of class size

Predicted class size Zsc valid instrument if it satisfies:

Instrument relevance: Cov(Xsc ,Zsc |Ws) 6= 0

• Can be checked by estimating first stage regression.

Instrument exogeneity: Cov(usc ,Zsc |Ws) = 0

• predicted class size (Zsc) depends on enrollment (Ws)

• enrollment also has direct impact on student achievement (Ysc) for other
reasons than class size (Xsc)

• hence, predicted class size as such is not an exogenous instrument

• however, assuming that effect of enrollment has been adequately
controlled for in test scores equation the remaining variation of predicted
class size serves as exogenous instrument
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Quasi-experimental estimates of class size

First stage 2SLS

Dependent variable: Class size Math test score

Class size (Xsc) -0.230**
(0.092)

Predicted class size (Zsc) 0.542***
(0.027)

Enrollment (Ws) 0.043*** 0.041***
(0.005) (0.012)

First stage F-statistic 402.97
Note: ** significant at 5% level, *** significant at 1% level

• Increasing class size by 1 pupil decreases average class test scores by
0.23 points.

• Results rely on assumption that direct effect of enrollment is linear.

• Angrist & Lavy (1999) therefore also estimate models with more flexible
functions of enrollment.


