# ECON4150 - Introductory Econometrics

# Lecture 18: Quasi-Experiments

Monique de Haan

(moniqued@econ.uio.no)

Stock and Watson Chapter 13

- What are quasi-experiments?
- Difference-in-differences
- Using quasi-experimental variation as instrument
- Heterogeneous effects in (quasi-)experiments
  - Heterogeneous effects & OLS
  - Heterogeneous effects & 2SLS
- Regression discontinuity design

Previous lecture we discussed:

Experiments: designed and implemented consciously by human researchers.

 An experiment randomly assigns subjects to treatment and control groups (think of clinical drug trials)

This week we will discuss:

Quasi-experiments or natural experiments have a source of randomization that is "as if" randomly assigned.

 This variation was however not the result of an explicit randomized treatment and control design.

# Different Types of Quasi Experiments

#### There are 2 types of quasi experiments

- 1 Whether an an individual (entity) receives treatment is "as if" randomly assigned, possible conditional on certain characteristics
  - For example a new policy measure that is implemented in one but not in another area, whereby the implementation is "as" if randomly assigned.
- Whether an an individual (entity) receives treatment is partially determined by another variable that is "as if" randomly assigned.
  - The variable that is "as if" randomly assigned can then be used as an instrumental variable in a 2SLS regression analysis.

- If the treatment in a quasi-experiment is "as if" randomly assigned, conditional on observed characteristics W....
- ....we can estimate the treatment effect by OLS while including W as control variable.
- This is similar as with an experiment with conditional randomization.
- We can obtain an unbiased effect of the treatment based on the conditional mean independence assumption...
- ...by estimating the following equation by OLS

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 W_i + u_i$$
 with  $E[u_i|X_i, W_i] = E[u_i|W_i]$ 

### Difference-in-Differences (DiD)

- What if the treatment in a quasi-experiment is "as if" randomly assigned, conditional on unobserved characteristics?
- If these differences in unobserved characteristics are time-invariant,...
- ...and we observe outcomes for the treatment & control group before & after the treatment ...
- ... we can use a method called difference-in-differences

- Two groups: treatment group (g = Tr) and control group (g = C)
- Two time periods: Before (t = 0) and after (t = 1)
- Potential outcomes:
- $Y_{igt}(1)$  outcome for entity *i* in group *g* in period *t* in case of **treatment**
- $Y_{igt}(0)$  outcome for entity i in group g in period t in case of **no treatment**
- We assume additive structure for mean potential outcome in case of no treatment (heart of dif-in-dif set-up):

$$E[Y_{igt}(0)] = \alpha_g + \lambda_t$$

- α<sub>g</sub>= time-invariant group effect
- $\lambda_t$ = time effect which is constant across groups

- A treatment takes place in treatment group but not in control group
- Suppose we observe outcomes before (t = 0) and after (t = 1) the treatment (panel data)
- Let the treatment indicator  $X_{qt}$ :
  - equal 1 for treatment group (g = Tr) in the second period (t = 1)

8

- equal 0 otherwise
- We can write the observed outcome as a function of the potential outcomes

$$Y_{igt} = Y_{igt}(1) \cdot X_{gt} + Y_{igt}(0) \cdot (1 - X_{gt})$$

Taking expectations and rewriting gives

$$E[Y_{igt}] = E[Y_{igt}(1) - Y_{igt}(0)] \cdot X_{gt} + E[Y_{igt}(0)]$$
$$= \beta X_{gt} + \alpha_g + \lambda_t$$

With the average causal effect of the treatment:  $E[Y_{igt}(1) - Y_{igt}(0)] = \beta$ 

$$E[Y_{igt}] = \beta \cdot X_{gt} + \alpha_g + \lambda_t$$

|                                                    | Before ( $t=0$ )                                                                   | After ( $t=1$ )                                                                                  |
|----------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Treatment group $(g = Tr)$ control group $(g = C)$ | $E[Y_{i Tr 0}] = \alpha_{Tr} + \lambda_0$<br>$E[Y_{i C 0}] = \alpha_C + \lambda_0$ | $E[Y_{i  Tr  1}] = \beta + \alpha_{Tr} + \lambda_1$<br>$E[Y_{i  C  1}] = \alpha_{C} + \lambda_1$ |

Comparing outcomes for treated and controls after intervention:

$$E[Y_{i Tr 1}] - E[Y_{i C 1}] = \beta + (\alpha_{Tr} - \alpha_C)$$

Comparing outcomes for treated before and after treatment:

$$E[Y_{i Tr 1}] - E[Y_{i Tr 0}] = \beta + (\lambda_1 - \lambda_2)$$

Instead subtract change for controls from change for treated:

DID = 
$$(E[Y_{i \, \pi_1}] - E[Y_{i \, \pi_0}]) - (E[Y_{i \, C \, 1}] - E[Y_{i \, C \, 0}])$$
  
=  $((\beta + \alpha_{\pi} + \lambda_1) - (\alpha_{\pi} + \lambda_0)) - ((\alpha_C + \lambda_1) - (\alpha_C + \lambda_0))$   
=  $(\beta + \lambda_1 - \lambda_0) - (\lambda_1 - \lambda_0)$   
=  $\beta$ 



**Common trend assumption**: In absence of intervention, the treatment group would have had the same trend in *Y* as the control group.

### DID: two groups & two time periods Example: Card & Krueger (AER, 1994)

- What is the effect of increase in minimum wage on employment?
- Prediction economic theory: a rise in the minimum wage leads perfectly competitive employers to cut employment.
- Card and Krueger investigate effect of increase in minimum wage from \$4.25 to \$ 5.05 in New Jersey on April 1, 1992.
- Data on 410 fast-food restaurants (Burger King, Wendy's,...):
  - in New Jersey (treatment group)
  - and Pennsylvania (control group)
  - in February/March 1992 (before)
  - and in November/December 1992 (after)

# DID: two groups & two time periods Example: Card & Krueger (AER, 1994)

020

#### Data on fast food restaurants:

| vars:<br>size:      | 3<br>7,380      |                |                | 21 Feb 2013 16:06                                                              |
|---------------------|-----------------|----------------|----------------|--------------------------------------------------------------------------------|
| variable name       | storage<br>type |                | value<br>label | variable label                                                                 |
| state<br>employment | float           | %8.0g<br>%9.0g |                | 1 if New Jersey; 0 if Pennsylvania<br>employment (fte) in fast food restaurant |
| time                | float           | %9.0g          |                | 0 if before, 1 if after                                                        |

Sorted by:

. sum

| Variable   | Obs | Mean     | Std. Dev. | Min | Max |
|------------|-----|----------|-----------|-----|-----|
| state      | 820 | .8073171 | .3946469  | 0   | 1   |
| employment | 794 | 21.02651 | 9.422746  | 0   | 85  |
| time       | 820 | .5       | .5003052  | 0   | 1   |

# DID: two groups & two time periods Example: Card & Krueger (AER, 1994)

#### Mean employment by state, time period:

| -> state = Pennsylvania, time = before |                |                |           |     |      |  |
|----------------------------------------|----------------|----------------|-----------|-----|------|--|
| Variable                               | Obs            | Mean           | Std. Dev. | Min | Max  |  |
| employment                             | 77             | 23.33117       | 11.85628  | 7.5 | 70.5 |  |
| -> state = Pennsylvania, time = after  |                |                |           |     |      |  |
| Variable                               | Obs            | Mean           | Std. Dev. | Min | Max  |  |
| employment                             | 77             | 21.16558       | 8.276732  | 0   | 43.5 |  |
| -> state = New                         | Jersey, time = | before<br>Mean | Std. Dev. | Min | Max  |  |
| employment                             | 321            | 20.43941       | 9.106239  | 5   | 85   |  |
| -> state = NewJersey, time = after     |                |                |           |     |      |  |
| Variable                               | Obs            | Mean           | Std. Dev. | Min | Max  |  |
| employment                             | 319            | 21.02743       | 9.293024  | 0   | 60.5 |  |

# DID: two groups & two time periods Example: Card & Krueger (AER, 1994)

Y<sub>igt</sub> is employment in restaurant i in state g at time t:

|                          | Before ( $t=0$ )                    | <b>After (</b> <i>t</i> = 1)      |
|--------------------------|-------------------------------------|-----------------------------------|
| New Jersey ( $g = Tr$ )  | $\widehat{E[Y_{i  Tr  0}]} = 20.44$ | $\widehat{E[Y_{i Tr 1}]} = 21.03$ |
| Pennsylvania ( $g = C$ ) | $\widehat{E[Y_{iC0}]} = 23.33$      | $\widehat{E[Y_{iC1}]} = 21.17$    |

• 
$$\hat{\beta}^{DID} = (21.03 - 20.44) - (21.17 - 23.33) = 2.75$$

- Counter-intuitive result: Employment increased as consequence of increase in minimum wage
- Note: small change in NJ, but downward trend in PA
- Common trend assumption: In absence of intervention employment in NJ would have had same downward trend as PA

# DiD: general set-up

DID-estimator can be obtained by estimating this equation by OLS

$$Y_{igt} = \beta_0 + \beta_1 \cdot X_{gt} + \beta_2 G_i + \beta_3 D_t + u_{igt}$$

- with  $G_i = 1$  for the treatment group and 0 for the control group,
- $D_t = 1$  if after &  $D_t = 0$  if before,
- and  $X_{gt} = G_i \times D_t = 1$  if treated and 0 otherwise
- If we observe outcomes at t = 0 & t = 1 for each i, we can also take first differences:

$$Y_{ig1} - Y_{ig0} = (\beta_0 - \beta_0) - \beta_1 \cdot (X_{g1} - X_{g0}) + \beta_2 (G_i - G_i) + \beta_3 (D_1 - D_0) + (u_{ig1} - u_{ig0})$$

$$\triangle Y_{ig} = \beta_1 X_g + \beta_3 + \triangle u_{ig}$$

 Main assumption: In absence of intervention treatment and control groups would have common trends

$$E[u_{igt}|X_{gt},G_i,D_t]=E[u_{igt}|G_i,D_t]$$
 or  $E[\triangle u_{ig}|X_g]=0$ 

# DID: general set-up, two groups

- We don't need panel data to apply difference-in-differences
- We can use repeated cross-sections to estimate

$$Y_{igt} = \beta_0 + \beta_1 \cdot X_{gt} + \beta_2 G_i + \beta_3 D_t + u_{igt}$$

- Repeated cross-section: a collection of cross-sectional data sets, where each cross-section corresponds to a different time period.
- Additional assumption: composition of treatment and control groups do not change over time.
- Minimum wage example: you don't need to observe exactly the same fast food restaurants in t = 0 & t = 1 ...
- ....as long as the sample of restaurants in New Jersey & Pennsylvania at t = 0 & t = 1 are random draws from the same population of fast food restaurants.

# DID: general set-up, two groups

Example: Card & Krueger (AER, 1994)

$$Y_{igt} = \beta_0 + \beta_1 \cdot X_{gt} + \beta_2 G_i + \beta_3 D_t + u_{igt}$$

- 1 . gen treatment= state\* time
- 2 . regress employment treatment state time, robust

Linear regression

Number of obs = 794 F( 3, 790) = 1.40 Prob > F = 0.2404 R-squared = 0.0074 Root MSE = 9.4056

| employment                          | Coef.                  | Robust<br>Std. Err.                          | t                               | P> t                             | [95% Conf. In                                | terval]                                    |
|-------------------------------------|------------------------|----------------------------------------------|---------------------------------|----------------------------------|----------------------------------------------|--------------------------------------------|
| treatment<br>state<br>time<br>_cons | -2.891761<br>-2.165584 | 1.795451<br>1.438696<br>1.641212<br>1.345741 | 1.53<br>-2.01<br>-1.32<br>17.34 | 0.126<br>0.045<br>0.187<br>0.000 | 7708128<br>-5.71588<br>-5.387236<br>20.68952 | 6.278024<br>067642<br>1.056067<br>25.97282 |

- The increase in the minimum wage in New Jersey (but not Pennsylvania) is an example whereby the treatment is "as if" randomly assigned
- We now turn to an example where the "as if" randomization partially affects the treatment.
- Research question: Does serving in the military affect future earnings?
- Treatment of interest: veteran status
- Natural experiment: During the Vietnam War draft eligibility was determined by a national lottery system based on birthdays
  - men with a low lottery number were eligible to be drafted into the military
  - men with a high lottery number were not eligible to be drafted.

- Serving in the military might have a positive effect on future earnings (training)
- Serving in the military could also have a negative effect (psychological problems/bad health)
- Estimating the effect of veteran status on earnings by OLS will likely give a biased estimate, because veteran status is correlated with (unobserved) individual characteristics.
- Draft lottery during Vietnam war randomly assigned draft eligibility.
- Draft eligibility partially determines actual military service.
- Angrist (AER, 1990) used the draft eligibility as an instrumental variable to estimate the causal effect of veteran status on earnings.

Sample of about 13500 men born in 1950

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$
  $X_i = \pi_0 + \pi_1 Z_i + v_i$ 

- Y<sub>i</sub> is earnings observed in 1981
- $X_i = 1$  if served in the military and 0 if not
- $Z_i = 1$  if individual was draft-eligible in 1970
  - randomly assigned a low lottery number (below cut-off)
- $Z_i = 0$  if individual was not draft-eligible in 1970
  - randomly assigned high lottery number (above cut-off)

Draft eligibility is a valid instrument if

Instrument exogeneity:  $Cov(Z_i, u_i) = 0$ 

- 1 Independence: Draft eligibility is uncorrelated with unobserved characteristics that affect earnings
  - Draft eligibility was randomly assigned by a national lottery and therefore uncorrelated with (unobserved) characteristics
- **Exclusion restriction:** Draft eligibility does not have a direct effect on earnings, only effect is via veteran status.
  - Assumption might be violated if men with low draft lottery number stayed in school longer to avoid being drafted.

Instrument Relevance:  $Cov(Z_i, X_i) \neq 0$ 

- Draft eligibility should affect probability of serving in the military.
- Can be checked by running first stage regression & testing  $H_0: \pi_1 = 0$

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$
  $X_i = \pi_0 + \pi_1 Z_i + v_i$ 

|                                                | First stage         | 2SLS                |
|------------------------------------------------|---------------------|---------------------|
| Dependent variable:                            | Served in Military  | Earnings (\$1000)   |
| Served in military                             |                     | -2.741**<br>(1.324) |
| Eligible for draft (lottery nr. below cut-off) | 0.159***<br>(0.040) | (1.02.1)            |
| First stage F-statistic                        | 15.80               |                     |

Note: \*\* significant at 5% level, \*\*\* significant at 1% level

#### The Wald estimator

There is an alternative way of computing the instrumental variable estimator:

Recall the formula of the instrumental variable estimator

$$\hat{\beta}_{IV} = \frac{\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \bar{Y})(Z_{i} - \bar{Z})}{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})(Z_{i} - \bar{Z})}$$

$$= \frac{\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \bar{Y})(Z_{i} - \bar{Z}) / \frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \bar{Z})^{2}}{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})(Z_{i} - \bar{Z}) / \frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \bar{Z})^{2}}$$

$$= \frac{S_{ZY} / S_{Z}^{2}}{S_{ZX} / S_{Z}^{2}}$$

- $\frac{S_{ZY}}{S_{7}^{2}}$  is the OLS estimator when regressing  $Y_{i}$  on  $Z_{i}$
- $\frac{S_{ZX}}{S_Z^2}$  is the OLS estimator when regressing  $X_i$  on  $Z_i$

#### When the instrument $Z_i$ is binary:

• Estimating  $Y_i = \gamma_0 + \gamma_1 Z_i + \varepsilon_i$  by OLS gives the following differences estimator

$$\widehat{\gamma}_1 = \frac{S_{ZY}}{S_Z^2} = E\left[\widehat{Y_i|Z_i} = 1\right] - E\left[\widehat{Y_i|Z_i} = 0\right]$$

• Estimating  $X_i = \pi_0 + \pi_1 Z_i + u_i$  by OLS gives the following differences estimator

$$\widehat{\pi}_1 = \frac{S_{ZX}}{S_Z^2} = E\left[\widehat{X_i|Z_i} = 1\right] - E\left[\widehat{X_i|Z_i} = 0\right]$$

 We therefore have that the IV estimator equals the so called Wald estimator

$$\hat{\beta}_{IV} = \frac{S_{ZY}/S_Z^2}{S_{ZX}/S_Z^2} = \frac{E[\hat{Y_i}|Z_i = 1] - E[\hat{Y_i}|Z_i = 0]}{E[\hat{X_i}|Z_i = 1] - E[\hat{X_i}|Z_i = 0]}$$

#### The Wald estimator

| $\widehat{\pi}_1$                               | $\widehat{\gamma}_1$                            | Wald estimate                                                                                                                                                            |
|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E[\widehat{X_i Z_i}=1]-E[\widehat{X_i Z_i}=0]$ | $E[\widehat{Y_i Z_i}=1]-E[\widehat{Y_i Z_i}=0]$ | $\widehat{\beta}_{IV} = \frac{E[\widehat{Y_i} \widehat{Z_i}=1] - E[\widehat{Y_i} \widehat{Z_i}=0]}{E[\widehat{X_i} \widehat{Z_i}=1] - E[\widehat{X_i} \widehat{Z_i}=0]}$ |
| 0.159<br>(0.040)                                | -0.436<br>(0.211)                               | -2.741<br>(1.324)                                                                                                                                                        |

- $\frac{-0.436}{0.159} = -2.741$
- Using a natural experiment, the draft lottery, as instrumental variable we find that serving in the military reduces future earnings by 2741 dollar.
- Note: this is based on the assumption of a homogenous treatment effect: β<sub>i1</sub> = β<sub>1</sub>
- We assume that the effect of serving in the military on earnings is the same for all men.

## Heterogeneous treatment effect & OLS

When we write

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

we assume that the effect of a unit change  $X_i$  equals  $\beta_1$  for all i.

- What if  $Y_i = \beta_0 + \beta_{1i}X_i + u_i$  with  $\beta_{1i} \neq \beta_1$
- If we have a (natural) experiment where the treatment  $X_i$  is ("as if") randomly assigned and we estimate the effect of  $X_i$  on  $Y_i$  by OLS we get

$$\begin{split} \widehat{\beta}_{OLS} &= \frac{S_{YX}}{S_X^2} \longrightarrow \frac{Cov(Y_i, X_i)}{Var(X_i)} = \frac{Cov(\beta_0 + \beta_{1i}X_i + u_i, X_i)}{Var(X_i)} \\ &= \frac{Cov(\beta_0, X_i) + Cov(\beta_{1i}X_i, X_i) + Cov(u_i, X_i)}{Var(X_i)} \\ &= \frac{0 + E[\beta_{1i}]Cov(X_i, X_i) + 0}{Var(X_i)} \\ &= E[\beta_{1i}] \end{split}$$

 With heterogeneous effects OLS will give a consistent estimate of the average treatment effect.

# Heterogeneous treatment effects & 2SLS

If we estimate a 2SLS model with heterogeneous effects

$$Y_i = \beta_0 + \beta_{1i}X_i + u_i$$
 with  $\beta_{1i} \neq \beta_1$   
 $X_i = \pi_0 + \pi_{1i}Z_i + v_i$  with  $\pi_{1i} \neq \pi_1$ 

the IV-estimator  $\widehat{\beta}_{IV}$  will not be a consistent estimator of the average treatment effect in the whole population.

Instead the IV-estimator will be a consistent estimator of the

local average treatment effect (LATE): the average treatment effect in the sub-population of those who are affected by the instrument.

**Draft-lottery example:** the average causal effect of military service on earnings *for men who complied with draft eligibility status* is equal to  $\widehat{\beta}_{IV} = -2,741$  (dollars)

**Compliers:** men that would serve in the military if draft eligible but would not serve if draft ineligible.

# Regression discontinuity design

Another example of a quasi-experiment is a (fuzzy) regression discontinuity design:

- If treatment occurs when some continuous variable W crosses a threshold w<sub>0</sub>, then you can estimate the treatment effect by comparing
  - individuals with W just below the threshold (treated)
  - individuals to these with W just above the threshold (untreated).
- If the direct effect on Y of W is continuous, the effect of treatment should show up as a jump in the outcome.
- The magnitude of this jump estimates the treatment effect.

# Sharp regression discontinuity design in a picture:

Treatment occurs for everyone with  $W < w_0$ , and the treatment effect is the jump or "discontinuity."



# Regression discontinuity design

**Sharp regression discontinuity design**: everyone on one side of the threshold  $w_0$  gets treatment, those on the other side do not get the treatment.

- $\bullet$  This is an example of a quasi experiment whereby the treatment is "as if" randomly assigned conditional on W
- Treatment effect can be estimated by estimating equation below by OLS

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 W_i + u_i$$
 with  $X_i = 1$  if  $W < w_0 \ \& \ X_i = 0$  if  $W \ge w_0$ 

Assuming that the direct effect of W<sub>i</sub> on Y<sub>i</sub> is linear and

$$E[u_i|X_i, W_i] = E[u_i|W_i]$$

Fuzzy regression discontinuity design: crossing the threshold  $w_0$  influences the probability of treatment, but that probability is between 0 and 1.

- This is an example of a quasi experiment whereby the treatment is partially affected by "as if" randomization conditional on W
- Treatment effect can be estimated by using 2SLS

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 W_i + u_i \qquad X_i = \pi_0 + \pi_1 Z_i + \pi_2 W_i + v_i$$
 with  $Z_i = 1$  if  $W < w_0 \& Z_i = 0$  if  $W \ge w_0$ 

Assuming that the direct effect of W<sub>i</sub> on Y<sub>i</sub> is linear and

$$E\left[u_{i}|Z_{i},W_{i}\right]=E\left[u_{i}|W_{i}\right]$$

- Angrist and Lavy (1999) use a fuzzy RD design based on the interpretation of the Talmud by 12th century rabbinic scholar Maimonides.
- According to Maimonides' rule:

"Twenty five children may be put in charge of one teacher. If the number in the class exceeds twenty-five but is not more than forty, he should have an assistant to help with the instruction. If there are more than forty, two teachers must be appointed"

- Since 1969 Maimonides' rule is used to determine the division of enrollment cohorts into classes in Israeli public schools
- Angrist and Lavy use this maximum class size rule as a source of exogenous variation to estimate the effect class size on test scores in elementary school.

- Angrist and Lavy link test score data with information on class size, enrollment and other school characteristics
- They estimate the following specification by 2SLS

$$Y_{sc} = \beta_0 + \beta_1 X_{sc} + \beta_2 W_s + u_{sc}$$

$$X_{sc}=\pi_0+\pi_1Z_{sc}+\pi_2W_s+v_{sc}$$

Y<sub>sc</sub> is average test score in class c in school s

 $X_{sc}$  is the size of class c in school s

W<sub>s</sub> is school enrollment

Z<sub>sc</sub> is predicted class size

Predicted class size is based on Maimonides' rule:

$$Z_{sc} = W_s / [int((W_s - 1)/40) + 1]$$

Z<sub>sc</sub> is predicted class size for school s

 $W_s$  is beginning-of-the-year enrollment for school s (for particular grade)

int(n) denotes largest integer less than or equal to n

- Equation captures the fact that according to Maimonides' rule
  - enrollment cohorts of 1-40 should be grouped in a single class,
  - enrollment cohorts of 41–80 should split into 2 classes of average size 20.5–40,
  - enrollment cohorts of 81–120 should be split into 3 classes of average size 27–40, and so on.





Predicted class size  $Z_{sc}$  valid instrument if it satisfies:

Instrument relevance:  $Cov(X_{sc}, Z_{sc}|W_s) \neq 0$ 

Can be checked by estimating first stage regression.

Instrument exogeneity:  $Cov(u_{sc}, Z_{sc}|W_s) = 0$ 

- predicted class size  $(Z_{sc})$  depends on enrollment  $(W_s)$
- enrollment also has direct impact on student achievement (Y<sub>sc</sub>) for other reasons than class size (X<sub>sc</sub>)
- hence, predicted class size as such is not an exogenous instrument
- however, assuming that effect of enrollment has been adequately controlled for in test scores equation the remaining variation of predicted class size serves as exogenous instrument

|                                 | First stage                    | 2SLS                |
|---------------------------------|--------------------------------|---------------------|
| Dependent variable:             | Class size                     | Math test score     |
| Class size (X <sub>sc</sub> )   |                                | -0.230**<br>(0.092) |
| Predicted class size $(Z_{sc})$ | 0.542***                       | (0.092)             |
| Enrollment (W <sub>s</sub> )    | (0.027)<br>0.043***<br>(0.005) | 0.041***<br>(0.012) |
| First stage F-statistic         | 402.97                         |                     |
| Note: ** significant at 5%      | 6 level, *** signific          | cant at 1% level    |

- Increasing class size by 1 pupil decreases average class test scores by 0.23 points.
- Results rely on assumption that direct effect of enrollment is linear.
- Angrist & Lavy (1999) therefore also estimate models with more flexible functions of enrollment.