Getting Started in Stata Without
Losing Time

Edwin Leuven
ENSAE-CREST

September 9, 2009

Contents

1 The Stata User Interface 2
2 Moving around on your file system 3
3 Stata syntax 3
4 Getting help 3
5 Reading and writing data 4
6 Looking at your data 4
7 Manipulating data 8
8 Combining and reshaping data 10
9 Plotting data 11
100rganizing yourself 13
11Programming Stata 14
12 Where to go from here... 18

Preface

This document is intended to get you quickly going in Stata. It focuses on getting
common data tasks done and introduces Stata programming. It does not discuss
the details of statistical/econometrical analysis in Stata. Comments/suggestions
are welcome at: edwin.leuven@ensae.fr


mailto:edwin.leuven@ensae.fr

3% 3 - Stata/MP 10.1 - [Results] =&l
W Fie Edit Data Graphics Statiscs User Window Help & x|

B-@6-68&- B-04Q (]

Name | Label | Type | For

| —

[C\Pocuments and Settings\Edwin Leuven'My Documents\My Dropbox

Figure 1: Stata Window

1 The Stata User Interface

Figure 1 shows how Stata looks (in MS Windows, the general layout is similar on
other platforms). At the bottom you see the Command line. In the command panel
you can type Stata commands which on <Enter> are executed immediately. You
will see the results in the large Results panel. At the left you find the Review and
Variables panels. The former shows which commands you have executed in your
current Stata session. Clicking on a command in the Review panel will copy it to
the Command line. An often more convenient way to recall earlier commands in
the command line is by pushing <PgUp>. Similarly <PgDn> moves you down in
the command history. The "Variables" panel lists the names of the variables in the
currently loaded dataset. Clicking in the panel will copy the variable name to the
command line.

You can execute Stata commands on the command line, or put them in a plain
text file with the extension .do. Stata has a simple build-in editor which you can
use to edit these files (you can also use the editor to run the file or a selection in
Stata). Using these so-called do-files is of course the preferred way to organize
your work., but the command line is very convenient when exploring your data.
You can also use it as a calculator: to calculate for example the square root of 2,
type the following (without the dot which is the Stata prompt)

. display sqrt(2)
1.4142136

note that names in Stata are case sensitive which means that -display- is not the
same as -Display-. More in general -display- prints strings and values of scalar
expressions which is handy to produce output in the programs that you may write.



http://www.stata.com/help.cgi?display
http://www.stata.com/help.cgi?display

2 Moving around on your file system

In the status line (completely at the bottom of the Stata window) you can see the
current working directory, which is also displayed with the command -pwd-. It
usually a good idea to ensure that this is the directory where your project files
are. You can do this using the DOS-style command -cd-, as in

’. cd "c:\Documents and Settings\John Doe\My Documents\myproject"

You need the quotes here because of the space in the path. To move a directory
down (to c:\Documents and Settings\John Doe\My Documents) use 'cd ..’, and
‘cd myproject’ brings you back up to where you were before.

To list all files in the directory use the command -dir-. The following lists the
do-files

’. dir *.do

3 Stata syntax

With a few exceptions, the basic language syntax in Stata is

[prefix :] command [varlist] [=exp] [if] [in] [weight] [using filename]
[, options]

where the square brackets indicate optional elements (what is optional depends
in practice of course on the specific command you are invoking). Some commands
can be abbreviated. If this is the case then the documentation and the help files
will underline the shortest possible abbreviation as above.

Suppose you want to estimate an OLS regression of the variable Inincome on
the variable educ for men only, this would look something like this:

’. reg lnincome educ if female== ‘

the full syntax of -regress- is

’. regress depvar [indepvars] [if] [in] [weight] [, options] ‘

4 Getting help

Getting help on a command in Stata is easy, typing

’. help command

will open a window that explains the full syntax of -command- and often includes
examples. Use -help- if you want to find out more about the commands discussed
in this document than discussed in this document!

To search for a command you can use

. findit keyword

which will search the keynote database and the Internet and pop-up a window
with the search results. -hsearch- searches the help files only.


http://www.stata.com/help.cgi?pwd
http://www.stata.com/help.cgi?pwd
http://www.stata.com/help.cgi?pwd
http://www.stata.com/help.cgi?regress
http://www.stata.com/help.cgi?help
http://www.stata.com/help.cgi?hsearch

5 Reading and writing data

Stata loads data into memory. The size of the data you can handle in Stata is there-
fore limited by the physical memory on your computer (this is often lest restrictive
than it sounds like). One implication is that you will need to ensure that Stata has
access to sufficient memory to fit your dataset. If this is for example 500MB, then
you can set the size of Stata’s memory area to 500 MB as follows

’. set memory 500m ‘

You can only -set memory- when no data is loaded. To clear Stata’s memory use

’. clear ‘

Stata datasets are single rectangular tables (n observations, k variables) and
have the extension "dta". You can read these into memory with the command -use-
as follows

. use filename ‘

If there is unsaved data in memory Stata will refuse (for your own safety) to read
in the data. You will first need to clear Stata’s memory area using -clear-. You can
add hte option 'clear’ to -use- which will automatically clear the memory before
loading the data.

You can also read (ASCII) non-Stata data files. If they are in fixed-column format
use -infix-. For example like this

. infix rate 1-4 speed 6-7 acc 9-11 using highway.raw

which reads the file highway.raw where the variable rate occupies position 1-4, the
variable speed position 6-7 and the variable acc position 9-11. Note that variable
names can be up to 32 characters and are case sensitive.

If you have data with one observation per line and where variables are separated
by a delimiter such as a comma or a tab you use -insheet-. These files are typically
generated with a spreadsheet or database. The following reads a file auto.csv
where variables are delimited with a semicolon

. insheet using auto.csv, delim(";")

It is also possible to read free format data files. See -help infiling- for a more
elaborate reference on how to read non-Stata data into memory.
To write the data in memory to disk you need to -save- like this

. save filename

If the file already exists, Stata will refuse to save the data and you will need to add
the option 'replace’ to overwrite the file.

6 Looking at your data

Once you have read the data into memory you might want to get a description of
your dataset. Below we read one of Stata’s example datasets, and the command
-describe- generates a data description like this:

. sysuse lifeexp
. d

Contains data from C:\Program Files\StatalO\ado\base/1l/lifeexp.dta
obs: 68 Life expectancy, 1998
vars: 6 26 Mar 2007 09:40


http://www.stata.com/help.cgi?memory
http://www.stata.com/help.cgi?use
http://www.stata.com/help.cgi?clear
http://www.stata.com/help.cgi?use
http://www.stata.com/help.cgi?infix
http://www.stata.com/help.cgi?insheet
http://www.stata.com/help.cgi?infiling
http://www.stata.com/help.cgi?save
http://www.stata.com/help.cgi?describe

size: 3,196 (99.9% of memory free) (_dta has notes)

storage display value
variable name type format label variable label
region byte %12.0g region Region
country str28 %28s Country
popgrowth float %9.0g * Avg. annual % growth
lexp byte %9.0g * Life expectancy at birth
gnppc float %9.0g * GNP per capita
safewater byte %9.0g *

* indicated variables have notes

Sorted by:

the output starts by listing the filename, the number of observations and vari-
ables and size. It then lists all the variables, their storage type, labels and con-
cludes with the sort order of your data. The variable "country" for example is a
string variable, and the rest of the variables are numeric. Not all numeric variables
have the same type. "region" for example is stored as a byte whereas "popgrowth"
is stored as a float. Because Stata needs to keep the dataset in memory it is is eco-
nomical in the way it stores data. There is for example no need to store a binary
variable as a float. Taking advantage of this, the command -compress- will try to
reduce the amount of memory used by your data. To read more about Stata’s data
types read -help data types-

The following list the contents of a dataset without loading it into memory

. describe using filename

The command -summarize- calculates summary statistics:

. sum
Variable | Obs Mean Std. Dev Min Max
_____________ e e e e e e e dccd e e c e cccccmcccmmmm e e e e e e e e aaa
region | 68 1.5 .7431277 1 3
country | 0
popgrowth | 68 .9720588 .9311918 -.5 3
lexp | 68 72.27941 4.,715315 54 79
gnppc | 63 8674.857 10634.68 370 39980
_____________ e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m
safewater | 40 76.1 17.89112 28 100

The output lists the number of observations used to compute the statistics, the
sample mean, standard deviation and the smallest and largest value in your data.
For the variable "country" the output lists 0 observations and no summary statis-
tics. This is of course because "country" is a string variable as we saw in the
output of -describe-.

We could also see above that our dataset has 68 observations. The output for
"gnppc" however shows only 63 observations which means that 5 observations
have missing values for this variable. The basic missing (numerical) value is shown
in Stata as a single dot ("."). Most (but not all) Stata commands drop observations
with one or more missing values.

Missing values are internally represented by a value higher than the highest
possible value of the data type of your variable. As a consequence you can use
missing values in logical conditions as follows

. sum popgrowth if gnppc>=.
Variable | Obs Mean Std. Dev. Min Max
_____________ e e e e e a e ac e e e e m e mccccccccccmmm e e e e e e e e e
popgrowth | 5 .9 1.202082 -.5 2.8

. sum popgrowth if gnppc<.



http://www.stata.com/help.cgi?compress
http://www.stata.com/help.cgi?data_types
http://www.stata.com/help.cgi?summarize
http://www.stata.com/help.cgi?missing

Variable | Obs Mean Std. Dev. Min Max
_____________ g
popgrowth | 63 .9777778 .9183513 -.4 3

where the first command summarizes the variable popgrowth for all observations
where gnppc is missing, and the second for the observations where gnppc is not
missing. You can also use the function missing(expression) which returns 1
(true) if expression is missing and O (false) otherwise. The following gives some
examples of missing values

. di missing(1)

0

. di missing(1/0)
1

di missing(.)

di missing(.x*4)
di missing("")

di missing("a")

0
. sum pop if mi(gnp)
Variable | Obs Mean Std. Dev. Min Max
_____________ e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m e — e
popgrowth | 5 .9 1.202082 -.5 2.8

The last line used mi() the abbreviated version of missing(). Note that the
variable names are abbreviated here, which one can do if the abbreviation has a
unique match.

When passing varlists to commands one can not only abbreviate variable names,
but also use wildcards. For example: kidx* are all variables starting with "kid",
kid*x all variables starting with "kid" and ending with "x", ind? all variables
starting with "ind" and having one following character, etc. See varlist for more
details. This feature is very useful when you like to avoid a lot of useless typing.

To list the values of your variables (i.e. look at your data) you can use -list-.
I personally prefer -clist- which does not format the output but is much quicker
in large datasets. Both -list- and -clist- allow you to list the values of selected
variables and for a subset of your data. For example like this

. cl country-safe if safe>=. & gnp>=.

country popgrowth lexp gnppc safewater
7. Bosnia and Herzegovina -.5 73 .
44. Yugoslavia, FR (Serb./Mont.) .5 72

Alternatively you can use -browse- which will open a spreadsheet type window
that allows you to browse your data area. -edit- does the same but then you can
change your data and drop variables in the browser.

One- and two-way frequency tables are generated with -tabulate-. For example
to obtain a frequency table of region for the countries where at least 50 percent
of the population have access to safe water you might type

. ta region if safe>50

Region | Freq Percent Cum
_____________ e e e e e e e e e e e e e e e m e mm e ——— -
Eur & C.Asia | 44 66.67 66.67

N.A. | 13 19.70 86.36

S.A. | 9 13.64 100.00

_____________ o e e e e e e e e e e e e e e e maaao
Total | 66 100.00



http://www.stata.com/help.cgi?varlist
http://www.stata.com/help.cgi?list
http://www.stata.com/help.cgi?clist
http://www.stata.com/help.cgi?list
http://www.stata.com/help.cgi?clist
http://www.stata.com/help.cgi?browse
http://www.stata.com/help.cgi?edit
http://www.stata.com/help.cgi?tabulate

until you realize that this also includes observations where safewater has missing
values, after which the following

. ta region if safe>50 & safe<.

Region | Freq. Percent Cum.
_____________ e e e e e e e e e d e e eeaaaa
Eur & C.Asia | 17 44.74 44.74

N.A. | 12 31.58 76.32

S.A. | 9 23.68 100.00

_____________ e e e e e e e e e e e e e m e m— e ——— -
Total | 38 100.00

produces the correct table. By default -tabulate- does not include missing values
of the variable it is tabulating in the frequency table, to add them use the option
‘missing’. Similar to the one-way table above, -tab varl var2- will produce a
two-way tabulation.

The command -table- produces tables with summary statistics as follows

. table region, c(m safe n safe pld® lexp n lexp ) row

Region | mean(safewa~r) N(safewa~r) plO(lexp) N(lexp)
_____________ S
Eur & C.Asia | 79.82353 17 67 44

N.A. | 75 13 64 14

S.A. | 71.2 10 64.5 10
I

Total | 76.1 40 67 68

7

the option ’c()’ is an abbreviation of the full option 'contents(clist)’ where
clist is a list of up to 5 statistics in which the statistic is followed by the varname
as in the example: 'm safe’ will calculate the mean of the variable safe, 'n safe’ a
count of non-missing observations of safe, and 'p10 lexp’ the 10th percentile of the
variable lexp. See -help table- for the complete syntax and a full list of available
statistics.

An alternative way of getting summary statistics per region would be to repeat
the command -summarize- on subsets of the data defined by the variable region.
You can achieve this in Stata with the -by- prefix with the following syntax:

by varlist : command

by will run command on the subset of your data consisting of the observations
having the same values for varlist. Most Stata commands can be used with -by-.
To -summarize- for example population growth by region we do the following

. by region: sum popg
not sorted

r(s);

. sort region

. by region: sum popg

-> region = Eur & C.Asia

Variable | Obs Mean Std. Dev. Min Max
poparowth | s .55 7175945 -5 2.8
-> region = N.A.

Variable | Obs Mean Std. Dev. Min Max
_____________ m o mm e e

popgrowth | 14 1.692857 .7488086 .7 3

-> region = S.A.



http://www.stata.com/help.cgi?tabulate
http://www.stata.com/help.cgi?table
http://www.stata.com/help.cgi?table
http://www.stata.com/help.cgi?summarize
http://www.stata.com/help.cgi?by
http://www.stata.com/help.cgi?by
http://www.stata.com/help.cgi?by
http://www.stata.com/help.cgi?summarize

Variable | Obs Mean Std. Dev. Min Max
_____________ e e e e e d e e e e e mc e cc e ccccccccccmmm e e e e e e e e
popgrowth | 10 1.93 .6165316 .7 2.9

As can be seen here, the data need to be sorted by the variables passed to -by-.
At first this was not the case and Stata threw an error. To sort the data we use
-sort-, after which Stata calculates summary statistics for every region separately.

7 Manipulating data

After having read your data into Stata you will probably like to prepare your data
for analysis. You may want to create variables using information in other variables,
or make modifications to existing variables.

The command generate creates new variables based on an expression:

. gen agesq = age”2 // use power operator to calculate square

. gen lnincome = log(income) // use logarithmic function

. gen byte retire = age>=65 if age<. // create indicator variable (0/1)

. gen rnd = uniform() // random nr from uniform distribution

. gen z = x + 50xinvnormal(uniform()) // create random z-score

. gen prob = normal(z) // prob from cumulative normal

. gen price = real(stringvar) // numeric from string variable with numbers

As can be seen from the examples above, algebraic or string expressions are
used in a standard way and can contain operators, functions and combinations of
both. Arithmetic expressions containing a missing value will evaluate to a missing
value.

Stata has a broad collection of functions that cover mathematical, probability,
random number, string, date and time, matrix operations. As usual -findit- is your
friend, as is -help functions-.

Stata uses the following operators in expressions:

Arithmetic Logical Relational
+ addition & and| > (greater than
- subtraction or < less than
* multiplication ! not | >= > orequal
/ division ~ not | <= < orequal
~ power == equal
- negation = not equal
+ string concatenation ~= not equal

N\

The order of evaluation (from first to last) of all operators is ! (or ~), ™, -
(negation), /, *, - (subtraction), +, I= (or\=), >, <, <=, >=, ==, &, and |.

The command -replace- works in the same way as -generate-, but instead of
generating a new variable it changes the values of observations in an existing one,
for example like this

. replace agesq = agesq/100
. replace educ = 12 if missing(educ) & highschool==1

where the first expression divides all observations of the variable agesq by 100,
the second changes missing values to the number 12 in the variable educ for all
observations where the variable highschool equals 1.

A function that deserves explicit mention is sum(). To illustrate what it does
consider the following



http://www.stata.com/help.cgi?by
http://www.stata.com/help.cgi?sort
http://www.stata.com/help.cgi?generate
http://www.stata.com/help.cgi?functions
http://www.stata.com/help.cgi?findit
http://www.stata.com/help.cgi?functions
http://www.stata.com/help.cgi?replace
http://www.stata.com/help.cgi?generate

. set obs 3
obs was 0, now 3

. g x = uniform()
. gy = sum(x)
. cl

X y
1. .1369841 .1369841
2. .6432207 .7802048
3. .5578017 1.338006

as you can see the j-th observation on y contains the sum of the first through jth
observations on x. To create the total sum we can use something called "explicit
subscripting on variables". In Stata you can access individual observations of a
variable by putting the observation number in square brackets after the variable
name. This can be a number or an expression. In expressions the current ob-
servation number is referred to by ' n’, the last observation by ° N’. It works like
this:

. gyl = x[3]
. gy2=y[.n-1]
(1 missing value generated)
. g y3 =y[N]
. cl
X y yl y2 y3
1. .1369841 .1369841 .5578017 1.338006

2. .6432207 .7802048 .5578017 .136984i 1.338006
3. .5578017 1.338006 .5578017 .7802048  1.338006

as you can see yl contains the 3rd observation of x, y2 is the lagged value of y
(note that the first observation has a missing value because there is no observation
0), and y3 now contains the total sum of x which was the last value of y.

The by prefix command may be combined with n to provide subscripting within
groups. For example:

. sort country year
. by country: gen gdpgrowth = (gdp - gdp[_n-1])/bp if year[_n]==(year[_n-1] + 1)

Note that the -if- condition checks that the current and previous observation are
actually two consecutive years. If this is not the case Stata will set the value of
gdpgrowth for that observation to missing. For more details on subscripting see
-help subscripting-.

We saw above that we could calculate the total sum of a variable as follows

. gen y = sum(x)
. replace y = y[_N]

another way of achieving this is to use extensions to generate called -egen-

. egen y = sum(x)

-egen- provides many convenient functions to create new variables, some of
which (sum() among others) can be used with -by-. Others provide quick ways
to calculate statistics of lists of variables such as the sum or the average. If you
find that have difficulties creating the variable you need you might get lucky in
-help egen-.

We now have the tools to do more fancy things. One of them is to make datasets
of summary statistics. We can use -egen- to calculate means, percentiles, etc.,
say by country and year using -by-. After this we keep one observation per by-
combination as follows

. sort region
. by region: egen mx = mean(lexp)
. by region: egen plOx = pctile(lexp), p(10)



http://www.stata.com/help.cgi?by
http://www.stata.com/help.cgi?if
http://www.stata.com/help.cgi?subscripting
http://www.stata.com/help.cgi?egen
http://www.stata.com/help.cgi?egen
http://www.stata.com/help.cgi?by
http://www.stata.com/help.cgi?egen
http://www.stata.com/help.cgi?egen
http://www.stata.com/help.cgi?by

. by region: keep if _n==
. keep region mx plOx
. list, noobs

L T e +
| region mx  plox |

________________________________ |
| Eur & C.Asia  73.06818 67 |
| N.A.  71.21429 64 |
| S.A. 70.3  64.5 |
B +

It turns out there is a convenient command called -collapse-, which does the
same in a single line:

. collapse (mean) mx = lexp (pl0) plox = lexp, by(region)

Note above the two different uses of -keep-. The first, keep [if], keeps a sub-
set of the observations, whereas the second, keep varlist, keeps a subset of the
variables. You can use the command -drop- in a similar way if this is more conve-
nient.

Finally, to rename variables use -rename-, and to change the order in which the
variables appear in your data use -order-.

8 Combining and reshaping data

When preparing data for analysis you may need to combine several datasets. To
stack data sets you can use -append-, more exactly like this:

. append using filename

which will append a Stata dataset on your file system to the dataset in memory.
Variables with the same name in both datasets get stacked on top of each other. If
a variable appears in only one dataset the observations corresponding to the other
dataset will be set to missing, as illustrated here:
(b appended to a)

(a.dta) (b.dta) ’ X ‘ y ‘ z ‘
I!!III!III 1 1.2 .
I!I 1.2 II!IIIIEIII 2 | 2.3 .
2] 2.3 6 10.03 3 /0.5 .
12 | 0.01
3] 0.5 6 . 0.03
12 . 0.01

Another common task is (match) merging as in this example:
(c.dta) (d.dta)

29[ v | x | nerge

(d merged to c)

1 |1.2]3.5 3
1 |1.2 1 |3.5

2 12.3|1.0 3
2 2.3 2 | 1.0 3 o5 1
3 10.5 6 | 0.1

6 0.1 2

which is done with the command -merge-. Assuming that both datasets are
sorted on the merge variable(s), the following loads dataset c.dta and then joins
dataset d.dta in a 1-to-1 merge

. use ¢
. merge id using d

-merge- will create a variable merge, the values of which indicate the merge
result: 1) observations from the master dataset (the one in memory) without a

10



http://www.stata.com/help.cgi?collapse
http://www.stata.com/help.cgi?keep
http://www.stata.com/help.cgi?drop
http://www.stata.com/help.cgi?rename
http://www.stata.com/help.cgi?order
http://www.stata.com/help.cgi?append
http://www.stata.com/help.cgi?merge
http://www.stata.com/help.cgi?merge

match in the using dataset, 2) observations from the using dataset without a match
in the master dataset, and 3) successful merges. -merge- can do 1-to-1 and match
merges.

Finally you might need to change the layout of your data. This arises for exam-
ple when your data is organized in columns (for example one variable per year)
whereas you need your data to be organized in rows (one observation per year).
This you can achieve with -reshape-. Consider the following two example datasets
from Stata’s help file in ‘'wide’ form and ’long’ form.

(long form)
’ id \ year \ sex \ inc ‘

1 80 0 | 5000

(wide form) 1| 81 | o |5500

’ id ‘ sex ‘ inc80 ‘ inc8l ‘ inc82 ‘ 1 82 0 | 6000
1 0 5000 | 5500 | 6000 2 80 1 | 2000
2 1 2000 | 2200 | 3300 2 81 1 | 2200
3 0 3000 | 2000 | 1000 2 82 1 | 3300
3 80 0 | 3000

3 81 0 | 2000

3 82 0 | 1000

You can move from wide to long with

. reshape long inc, i(id sex) j(year)

where year does not exist yet in your original (wide) dataset, but is the name of
the variable that Stata will create to contain the values of the stubs (80, 81, 82).
Similarly, one can go from long to wide with

’. reshape wide inc, i(id sex) j(year) ‘

Although much less common, you can also completely transpose your data (-
xpose-), or stack lists of variables in new ones (-stack-).

9 Plotting data

Stata’s user interface has an elaborate Menu which you should ignore with one
exception: Graphics. Through the Menu you can access dialogs that will assist
you in creating graphs. When you use the dialogs to construct a graph its syntax
will also be printed in the Results window. This can be very convenient because
the syntax of graphics is rather intricate and constructing non-standard graphs is
not always straightforward.

This being said, you do not need an advanced degree to create simple plots to
look at your data. Using the system example dataset from above, the following
uses -scatter- to create a scatter plot of the life expectancy vs. access to safe
water:

. sysuse lifeexp, clear
. scatter lifeexp safewater

which produces a plot like this:

11


http://www.stata.com/help.cgi?merge
http://www.stata.com/help.cgi?reshape
http://www.stata.com/help.cgi?xpose
http://www.stata.com/help.cgi?stack
http://www.stata.com/help.cgi?scatter

70 75 80
I I
[
. .
°
.
.
)

Life expectancy at birth
65
]
L]

60
|

55}
|

20 40 60 80 100
safewater

note that the syntax is such that the last variable is the x-variable.

Line plots are created in a similar fashion. To illustrate let’s -regress- lifeexp
on safewater, create the predicted value using -predict-, and plot the result with
-line-:

reg lifeexp safewater
(output omitted)
. predict py
. line py safewater

which results in the following plot:

Fitted values
70 75 80
L L |

65

60
I

20 40 60 80 100
safewater

Both -scatter- and -line- fall in the class of -twoway- plots and are shorthand for
-twoway scatter- and -twoway line-. It is easy to overlay plots:

. twoway (sc lifeexp safewater) || (line py safewater)

80
|

70
I

65
|

60
|

55
|

20 40 60 80 100
safewater

‘ ® Life expectancy at birth

Fitted values ‘

To plot the distribution of a variable you can use -histogram-, this for example

. hist lifeexp, discrete

12



http://www.stata.com/help.cgi?regress
http://www.stata.com/help.cgi?predict
http://www.stata.com/help.cgi?line
http://www.stata.com/help.cgi?scatter
http://www.stata.com/help.cgi?line
http://www.stata.com/help.cgi?twoway
http://www.stata.com/help.cgi?scatter
http://www.stata.com/help.cgi?line
http://www.stata.com/help.cgi?histogram

will result in the following graph

I}
ol

Density

.05
|

T T T
65 70 75 80
Life expectancy at birth

55 60
The option ’discrete’ tells Stata that lifeexp is a discrete variable so that -

histogram- will not bin the data.
Finally, to export a graph to disk you can use -graph export-

. graph export plot.eps

where the extension is an easy way to specify the file format. The example here
exports to an encapsulated postscript file (eps).

Stata’s graphing capabilities are very rich and there is nothing you cannot tweak,
see -graph- for much more, and as mentioned above: use the dialogs to learn
Stata’s graphing syntax.

10 Organizing yourself

Although the command line is a great way to explore your data, it is absolutely
essential that you organize your analyses in do-files. Remember, these are plain
text files with the extension .do. You can execute these files from the command
line like this

. do filename

where it is not necessary to type the .do extension.
To ensure that your old do-files will run under future versions of Stata is suffices
to put

version #

at the start of your do-file. This sets Stata’s command interpreter version to #,
where you should substitute # with your current version of Stata which you can
check with -version-.

It is also a good habit to put comments in your Stata code at points where you
think that some explanation might help others - or yourself months later — under-
stand why you did what you did.

You can begin comments with // or ///, or put them between /* and */. The latter
can be put anywhere, span multiple lines and this is therefore a good way to
comment out large chunks of code. Both // and /// are single line comments, they
need to be preceded by at least one space and everything after them is commented
out. The difference between // and ///, is that with /// the next line will be joined
to the current one when executing the do-file (while ignoring the comment). It is
therefore a good way to break long lines over several ones.

13


http://www.stata.com/help.cgi?histogram
http://www.stata.com/help.cgi?graph_export
http://www.stata.com/help.cgi?graph
http://www.stata.com/help.cgi?version

It is advisable to give meaningful names to your do-files. One convention uses
crxxx.do for a do-file that creates the dataset xxx.dta, gryyy for the do-file that
creates the graph yyy, and anzzz.do for the do-file that does analysis zzz. Do-files
can be called from do-files, so finally you can create a do-file main.do which calls
all do-files in your project. This way you can always reproduce your results later
simply by running main.do.

When running a do-file with -do- the output is printed in Stata’s Results window.
To write the results to disk you can use -log-. The following opens a plain text
log-file (extension .log) and will overwrite an existing file with the same name

’. log using filename, text replace

everything which follows this statement will be written to the log file. This

’. log close

closes the log file. When a log file is open you can switch logging on and off with
-log on- and -log off-.

Another good habit is not only to document your Stata code, but also your
data. Give your variables short meaningful names in only lowercase letters. This
reduces the amount of typing on the command line, and makes your code and
datasets more understandable. You can also attach labels and notes to your data.
For example variables are labelled like this:

. label var lifeexp "Life expectancy at birth"

or define value labels and attach them to a variable:

. label define region 1 "Europe/Central Asia" 2 "N. America" 3 "S. America"
. label value region region

See -label- for more details. Finally you can attach longer -notes- to your data or
variables.

11 Programming Stata

At one point you might find yourself in the position that you want to automate a
repetitive but systematic task (are you copy-pasting pieces of code and changing
them a bit?), or reuse your code in other places. For this you will need to learn a
bit of Stata programming.

The first thing you should understand is what Stata calls "macros". A -macro-
is nothing more than a named piece of text that you can access and modify in
your code. Macros can be local or global. The scope of local macros is limited
to the program or do-file where they were defined. Global macros are visible to
all programs and do-files. Although global macros are sometimes handy they are
EVIL (because of namespace clashes, and propagating bad programming style)
and you should avoid them.

The syntax for local macro definition is

llocal name [=] expression

For example

’. local a 1 two three

defines a local macro called a that contains the text "1 two three".
To access (dereference) a local macro you need to enclose the name in a single
left quote (") and single right quote (‘). Stata will replace all occurrences of local

14


http://www.stata.com/help.cgi?do
http://www.stata.com/help.cgi?log
http://www.stata.com/help.cgi?label
http://www.stata.com/help.cgi?notes
http://www.stata.com/help.cgi?macro

macros with their values. To illustrate how this work we print the value of the
local macro with -display-

. di Il‘alll
1 two three

the (dereferenced) macro is put between double quotes to ensure the result is a
string. Otherwise -display- will evaluate the expresson 'l two three’ and complain
that it cannot find the variable/scalar 'two’ (and ’three’).

You should not use the equals sign (=) when storing an expression in a macro
unless you want the expression to be evaluated. To appreciate the difference
consider the following example.

. // example 1

. local a 1

. local a "a' +1
. di "a'

2

.di "ta'"

1+1

. // example 2

. local a1

. local a = "a' +1
di “a'

dl ||\a|||

In the first example the number 1 is stored in macro a. In the second -local-
statement the contents of macro a is substituted in the expression which is then
stored in macro a. The first display statement prints out 2. Is "2" the literal
content of macro a? No, the second -display- statement shows that it is "1+1", this
is passto and evaluated by -display- which then prints out the result: 2.

Example 2 shows what happens when we use the equals sign in the local state-
ment: The expression will first be evaluated and then stored in the macro! As a
consequence both -display- statements print out the same result. It is therefore
important to be aware when and where expressions are evaluated.

The seemingly simple concept of these ‘'macros’ is in practice very powerful. We
can use them for example in loops to create indicator variables:

forvalues r=1/3 {
g reg'r' = region=="r'
}

-forvalues- loops over a range of values (in this case 1, 2, 3) and on each iteration
the command(s) between braces get executed after the value of the local macro is
substituted. In the above example this implies that Stata first executes

’g regl = region== ‘

then

’g reg2 = region== ‘

etc. See -foreach- for other ways to loop over lists of items such as variables,
arbitrary strings or numbers.

In expressions that are evaluated, macros behave in many ways like conventional
single (scalar) string/numerical variables. One important difference arises from
the fact that their contents get substituted everywhere, not only in expressions.
This means that macros can be many things at the same time: numbers, string,
parts of variable names, etc. In the end the important thing to remember is that

15


http://www.stata.com/help.cgi?display
http://www.stata.com/help.cgi?forvalues
http://www.stata.com/help.cgi?foreach

NO O WN -

you can use local macros everywhere and in any way as long as the result after
macro substitution is a valid Stata command.

To create and manipulate macros there are extended macro functions. These
allow you for example extract a word from a macro, or count the number of words
it contains. There are also functions which store the variable or value labels in a
local, or gets a list of files that match a given file pattern in a directory.

Macros are also often used to contruct and manipulate lists. The command -
levelsof- for example stores all unique values of a variable in a local macro. There
are also extended functions to combine and such lists.

Stata also has scalars which can store both numbers and strings. Their common
use is to store numerical results which is done in double precision. Scalars behave
like conventional (scalar) variables and many commands, such as -summarize-,
return results in the form of scalars:

. sum lexp if region==

Variable | Obs Mean Std. Dev. Min Max
_____________ e e e e e e ddddfmm e mmmmmmmmcccccccc e e e e
lexp | 44 73.06818 4.150639 65 79
return list
scalars:
r(N) = 44
r(sum_w) = 44
r(mean) = 73.06818181818181
r(Var) = 17.22780126849894
r(sd) = 4.150638657905424
r(min) = 65
r(max) = 79
r(sum) = 3215

. di r(mean)x*r(N)
3215

Stata commands return their results can not only return scalars, but also macros,
and matrices. These can all be used in calculations or stored. After you run a com-
mand you can get the list of returned objects using -return list- or -ereturn list-.
Alternatively you can look it up in the help file or the documentation.

Finally you can use -program- to write programs that you can use in the same
way as you use regular Stata commands. The following introduces the key con-
cept.

program foo

di "All: “x'"

local n : word count “x
forv i=1/"n' {

di ""i':

T
}

end

The first line starts the program defininition and names the program (foo). All
code in between -program name- and -end- (on the last line) will define your pro-
gram. Like in any other programming language you can pass arguments to your
program. Let’s see what happens when we do that:

. foo the quick brown fox jumped
All: the quick brown fox jumped
: the
quick
brown
fox
jumped

U WN R

16



http://www.stata.com/help.cgi?extended_fcn
http://www.stata.com/help.cgi?levelsof
http://www.stata.com/help.cgi?macrolists
http://www.stata.com/help.cgi?summarize
http://www.stata.com/help.cgi?return
http://www.stata.com/help.cgi?ereturn
http://www.stata.com/help.cgi?program

_ =

POWOWOONOUWN -

First note that we called this program in the same way as we would have called
a regular Stata program. Now let’s step through the program line by line. As can
be seen from the output of line 2, Stata stores all the arguments in a local macro
named *. Stata also splits up (-tokenize-) the complete argument into separate
tokens based on the spaces. The first argument is stored in the macro 1, the
second in macro 2, etc.

Line 3 uses an extended macro function to count the number of arguments, and
line 4 defines a loop to print out each token separately using -display-.

The outputting is done in line 5 which merits some attention because of the
way it uses macros. The first occurance of i, in single quotes, prints out its name
(number) whereas the second, in double single quotes, prints out the contents.
Now remember what Stata does: it (repeatedly) replaces all macros with their
contents. Consider the first iteration of the loop (i=1) when Stata interprets the
following command:

’di iy g

it will substitute the value of macro i resulting in

’di "1: C1'

|

but there is still an unsubstituted macro left, and Stata therefore does another
round of substitution resulting in

’di "1: the"

|

which is then printed. This happens on every iteration of the -forvalues- loop
resulting in the print-out above.

We have now seen how to define a Stata program and access the arguments.
Let’s consider a sligthly more useful program that should called after -regress-.

The program will print out the coefficient coefficient of an explanatory variable
— the name of which will be the argument passed to the program - followed by the
standard error enclosed in parentheses and stars to indicate the level of statistical
significance.

capture program drop _res
program _res
args xvar
di %9.3f _b[ 'xvar']l _c
di " (" trim(string(_se[ xvar'], "%9.3f")) ")" _c
scalar pval = 2xttail(e(df_r), abs(_b[ xvar'l/_se[ xvar']l))
if (pval<0.01) di "sxx"
else if (pval<0.05) di "*x "
else if (pval<0.1l) di "« "
else di " "
end

The first line drops the program from memory. This is a common thing to do
when you define programs in your do-files just to avoid that execution will stop:
Stata will not allow you to define a program with a name that already exists and
throw an error. At the same time -program drop- will throw an error if a program
with this name is not defined. The preceding -capture- will "swallow" the error
and execution will continue.

As above line 2 starts the program definition. Line 3 uses -args- which does
nothing more than give the tokenized arguments 1, 2, 3, etc more meaningful
names to make the code more readable. This program uses one argument, namely
the name of one of the regressors, which is now called xvar.

Line 4 prints the regression coefficient which can be accessed with b[varname]
preceded by the format string %9.3f (-format-). This prints out the coefficient on 9

17


http://www.stata.com/help.cgi?tokenize
http://www.stata.com/help.cgi?display
http://www.stata.com/help.cgi?forvalues
http://www.stata.com/help.cgi?regress
http://www.stata.com/help.cgi?capture
http://www.stata.com/help.cgi?args
http://www.stata.com/help.cgi?format

fixed positions and 3 decimals. The ’ ¢’ at the end tells -display- not to print a line
break (and continue). Line 5 prints the formatted standard error se[varname] in
parentheses.

The only thing left to do is to print out the significance stars. In a first step, line
6 calculates the p-value and stores it in a scalar. This is done by calculating the
t-statistic, getting the residual degrees of freedom returned by -regress- in e(df r),
and plugging these in the function ttail() which calculates Pr(T>t). Finally lines
7-10 use -ifcmd- to determine how many stars to print out based on the p-value.

The following illustrates what the program does where col(12) tells -display- to
continue on column (position) 12, and -quietly- supresses all regression output on
the terminal.

foreach y of varlist lexp popgrowth gnppc {
di "'y'" _col(12) _c
quietly reg 'y' safewater
_res safewater

}

lexp 0.239  (0.026)*x*x
popgrowth -0.022 (0.008) **xx*
gnppc 406.353 (68.844) xxx

as you can see we now have nicely formatted output from three different regres-
sions.

12 Where to go from here...

As mentioned from the outset, many topics are not covered in this document which
concentrates on presenting basic data management and programming skills.

Estimation and testing for example is beyond the scope of this presentation. This
includes generic maximum likelihood estimation (-ml-), boostrapping (-bootstrap-),
monte carlo simulation (-simulate-) and permutation (-permute-). One way to get
started on these and many more subjects is by browsing the overview in the help
files, and of course -findit-.

Then there is the possibility to write full-fledged Stata commands yourself. A
Stata command is essentially a -program- in a plain text file with the extension
.ado. If it is on your adopath you can call it from any do-file. If you want to write
ado-files you should learn things like how to parse standard Stata syntax (-syntax-),
mark your sample (-mark-), make your program by-able (-byprog-), format output
(-displaying output-), write help files, return results (-return-), debug your pro-
grams (-contents debugging-). See help -help contents programming - for much
more.

Finally, matrices were not discussed (-help contents matrices-). Stata comes
with a full fledged matrix programming language called Mata (-help mata-). Stata
code is interpreted and can therefore be slow, especially when doing things like
looping over observations. Mata however is compiled by Stata and is therefore
much faster. This also means your code is platform-independent. A Mata routine
written under Windows will run without changes on a Linux box (or any other plat-
form supported by Stata). Mata has a C-like syntax and its matrix language is com-
parable to programs like Matlab (porting existing code is usually straightforward).
It also features optimization routines, and I/O and text processing functions. At
the same time Mata is tightly integrated with Stata giving you the advantage of
having access to the same data management and statistical procedures you have
access to on the command line. Finally, you can benefit from Mata’s speed and
call Mata routines in your do- and ado-files.

18



http://www.stata.com/help.cgi?regress
http://www.stata.com/help.cgi?f_ttail
http://www.stata.com/help.cgi?ifcmd
http://www.stata.com/help.cgi?quietly
http://www.stata.com/help.cgi?ml
http://www.stata.com/help.cgi?bootstrap
http://www.stata.com/help.cgi?simulate
http://www.stata.com/help.cgi?permute
http://www.stata.com/help.cgi?contents_statistics
http://www.stata.com/help.cgi?findit
http://www.stata.com/help.cgi?program
http://www.stata.com/help.cgi?syntax
http://www.stata.com/help.cgi?mark
http://www.stata.com/help.cgi?byprog
http://www.stata.com/help.cgi?contents_displaying_output
http://www.stata.com/help.cgi?return
http://www.stata.com/help.cgi?contents_debugging
http://www.stata.com/help.cgi?contents_programming 
http://www.stata.com/help.cgi?contents_matrices
http://www.stata.com/help.cgi?mata

Before plunging into these more advanced techniques the first thing to do how-
ever is to put the ones discussed in this document into practice. The only way to
learn how to program is by dirtying your hands.

19



	The Stata User Interface
	Moving around on your file system
	Stata syntax
	Getting help
	Reading and writing data
	Looking at your data
	Manipulating data
	Combining and reshaping data
	Plotting data
	Organizing yourself
	Programming Stata
	Where to go from here...

