ECON4260 Behavioral Economics

$3^{\text {rd }}$ lecture

Endowment effects

and
aversion to modest risk

Decision weights
(See Benartzi and Thaler, 1995)

\qquad
\qquad
\qquad
\qquad
\qquad

The value function (4) มamysimer (see Benartzi and Thaler, 1995)
$v(x)=\left\{\begin{array}{cc}x^{\alpha} & \text { if } x \geq 0 \\ -\lambda(-x)^{\beta} & \text { if } x<0\end{array}\right.$

- $\alpha=\beta=0.88$
- $\lambda=2.25$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Prospect theory - decision weights

$w(p)=\frac{p^{\gamma}}{\left(p^{\gamma}+(1-p)^{\gamma}\right)^{1 / \gamma}} \quad \gamma=0.61$

- Consider lottery
- 100 with 5% probability
- 200 with 5% probability
- With weight

100 with 13.2% probability - 200 with 13.2% probability

- 2000 with 5% probability
- 2000 with 13.2% probability
- Problem:
- The weights adds to 264%
- Prospect theory predict that people will prefer this lottery to 3000 for sure

Cumulative Prospect theory Rewrite to cumulative probabilities

- Same lottery
- 100 with 5% prob.
- 200 or less with 10% prob.
- 1900 or less with 95.0% prob.
- 2000 or less with 100% prob.
- Cumulative weight
- 100 or less with 13.2% prob.
- 200 or less with 18.6% prob.
- 300 or less with 22.7
- 1900 or less with 79.3% prob.
- 2000 or less with 100% prob.

$$
w(p)=\frac{p^{\gamma}}{\left(p^{\gamma}+(1-p)^{\gamma}\right)^{1 / \gamma}}
$$

- Weights
- 100 with 13.2% prob.
- 200 with 5.4% prob.
- 300 with 4.1% prob.
- 2000 with 21.7% prob
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The endowment effect

- Three groups:
- Mug owners get at mug (worth 5\$ at the local store)
- Buyers get 5\$
- Choosers get nothing, but will choose money or cup.
- Elicit willingness to pay / willingness to accept
- The mug owners will sell for 7.12 \$
- The others will buy for 2.87 \$
- The choosers indifferent at 3.12 \$
- Prospect theory interpretation
- Getting the mug makes it a loss to part with it
- The mug is a gain if you have not been given one

Exchange

- Half the group get the mug
- Independent of mug-valuation
- The 50% with highest mug valuation will be divided:
- One half got a mug
- The other half did not
- Expect half the mugs to be traded
- Actually about 10-20\% are traded
- Coase's theorem: Final allocation independent of initial assignment of property rights

Department of Economics

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Transaction costs

- Same experiment with poker chips
- Each participant has a given "exchange rate"
- If it is worth $5 \$$ to me and $3 \$$ to you both will benefit if you sell it to me for $4 \$$.
- Demand and supply functions derived
- Can find market equilibrium prediction, provided no transaction costs.
- RESULT: Outcome equals prediction
- No transaction cost
\qquad

Endowment effects in

- Crossing indifference curves
- Pens for Money
- Money for Pens
- Kinked indifference curves around status quo
- E.g. the Edgeworth box

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

 The evolution of endowment effect

- Animals face recurrent fights over resources
- A coordination game, need a coordination device
- Incumbent stay, entrant runs
- Butterfly experiment
- Both on hilltop for one day
- They fight (both incumbents)
- Fighting over a resource - Two Nash equilibriums (ESS) - One fight and one run
- Both fighting, they'll kill each other
- Allow some initial test of strength

	Fight	Run
Fight	$-1,-1$	1,0
Run	0,1	0,0

Plott and Zeiler's critique of the

 "endowment effect'- Is the WTPNWTA gap really evidence of an endowment effect?
- WTP/WTA not found in all studies
- Differences in procedures
- The results depend on procedures
- Concern about misunderstanding
- Do subject understand "true value"
- Anonymity
- Do high-bidders apear naive?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Becker-DeGroot-Marschak mechanism

- How much will you accept to part with the mug?
- Say you'll really do it for $5 \$$
- Why not state $7 \$$ and hope you will get at least $6 \$$
- BDM-Mechanism (seller)
- The seller states a minimum price X (Your state $7 \$$, true price is $5 \$$)
- A random price P is drawn (Suppose we pick $6 \$$)
- Sold at price P if $P \geq X$ (If you stated $7 \$$, you lost the $6 \$$ deal)
- The mechanism is incentive compatible. (Rational to state $5 \$$)
- Do subject understand the incentive compatibility? - Or do they still try to sell high and buy low?
\qquad

Misconceptions

- "Revealed theory approach"
- 4 Controls
- Incentive compatibility
- Training
- Paid Practice
- Anonomity
- Situation trigger "selling behavior", i.e. selling high.
- Not fully understand auction mechanism
- Behave as if an standard acution.

Design and results

\qquad

- Invoke all controls
- Training, paid practice, incentives (BDM) and anonymity
- Main result: No WTA-WTP gap
- That is: No Endowment effect
- True even without paid practice
- What about exchange-effect
- Not in the paper
- Plott and Zeiler in later paper: Remove the word "gift" and the exchange effect disappear.

Department of Economics

\qquad
\qquad
\qquad

Follow up studies

- Isoni et al
- Randomized asignment of procedure condition
- Constant show-up fee.
- No gap and no difference between procedure
- "House money"
- Physical proximity to item and framing

Learning to trade?

- List (2004)
- Endowment effect on sports card show
- No effect from very experienced traders
- Engelman and Hollard (2010)
- First a round where half the subjects were force to trade, the other half had the opportunity.
- Forced: If they did not trade they lost the item
- Next they run the exchange experiment.
- They find no endowment effect for those forced to trade
- An endowment effect on those who had the oportunity to trade.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Expectations

- Közegi and Rabin argues that the reference point is determined by expectations.
- Expectations follows from what you think you will do.
- If you think you will trade the reference point is not the item you own.
- But the item you expect to get after the exchange
- Similarly with Plott and Zeiler
- Training people to understand the experiment
- Also change their expectation of what they will do.

Ericson and Fuster:

Can expectations explain the empirical findings?

- Plott and Zeilers (2005) extensive training build an expectation that the item will be traded.
- Engelmann and Hollard (2010) first had a round were the item subjects received had to be given away.
- Will they expect to keep the next item they get?
\qquad

Rabin's theorem

- Suppose a person is indifferent to (0) and a lottery (+100 Kr , 67\% ; -100 Kr , 33\%)
- The person would be indifferent irrespective of income level
- Assume the person maximizes expected utility
- For what values of X will he prefer the lottery (X, 50%; $-100,50 \%$) to (0)?

There is no such X, however large!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lotteries and wealth

- A lottery ($\mathrm{x}_{1}, \mathrm{p}_{1}, \mathrm{x}_{2}, \mathrm{p}_{2}$)... but what is x ?
- You get 2000 and then (-1000,50\%)
- Is the 2000 included in x or independent?
- There is no such thing as independence between decision in standard theory
- 1000 kroner can be used for
- Coffees on Trygve
- Saved to help buy an apartment in the future
- Saved for pensions
- etc
- Your total wealth will increase from W to W+xi
- Expected utility should thus be written

$$
E u(W+x)=\sum_{i=1}^{n} u\left(W+x_{i}\right) p_{i}
$$

Indifference for any W

- Indifference implies
$(2 / 3) u(W+100)+$
(1/3) u(W-100)
$=u(W)$
$\Delta u^{+}=u(W+100)-u(W)$
$\Delta u^{-}=u(W)-u(W-100)$
$\Delta u^{-}=2 \Delta u^{+}$

\qquad
\qquad
\qquad

\qquad
\qquad

Department of Economics \qquad

Sketch of proof

- $u(W+300)=u(W+300)-u(W+200)$

$$
\begin{aligned}
& +u(W+200)-u(W-100) \\
& +u(W+100)-u(W) \\
& =\Delta u^{+} / 4+\Delta u^{+} / 2+\Delta u^{+}
\end{aligned}
$$

- $u(W+n 100)-u(W)=\left(1+2^{-1}+\ldots+2^{-(n-1)}\right) \Delta u^{+}<$ Δu^{-}
- $\mathrm{Eu}=50 \% \mathrm{u}(\mathrm{W}+\mathrm{n} 100)+50 \% \mathrm{u}(\mathrm{W}-100)$
- $\mathrm{Eu}-\mathrm{u}(\mathrm{W})=50 \%[u(\mathrm{~W}+\mathrm{n} 100)-u(\mathrm{~W})]$
$-50 \%[u(W)-u(W-100)]<0$
(4) inswrasitutit

Almost any risk aversion yields similar results

- A person who turns down a lottery
(100, 51\%;-100,49\%) at any income level
- Will also turn down
(+10 $000000000,51 \%,-1800,49 \%)$
- If such conclusions are implausible, EU imply risk neutrality towards modest risk.

Department of Economics

7) : masm

Indifference for W < W0+10 000

- Is the problem that the person is indifferent for any level of W ?
- With W0 = 1000000 , ' 12 ' in the figure is only 1001200
- Turn down
(-100,55\%;1.4 1031,45\%)

\qquad

Prospect theory, by contrast, yields modest risk aversion

- Reference point is current wealth.
- Choices should be independent of wealth
- Plausible?
- Could you think of an experiment to test it?
- Can the theory easily be adjusted to account for wealth?
- Loss aversion implies risk aversion even for modest risk.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mental accounting

- Imagine that you are about to purchase a jacket for (\$125)[\$15] and a calculator for (\$15)[\$125]. The calculator salesman informs you that the calculator you wish to buy is on sale for $(\$ 10)[\$ 120]$ at the other branch of the store, located 20 minutes drive away. Would you make the trip to the other store
- A: (Numbers). Most will make the trip
- B: [Numbers]. Few will make the trip
- Both cases save $\$ 5$ at the cost of a 20 minutes trip.
- Why do people choose differently in A and B ?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Doomenonoconoms. \qquad

Default / Status Quo Bias

- Samuelson and Zeckhauser (1988):
- A: "...You inherit a large sum of money from your uncle. ...
- B: "... You inherit a portfolio... A significant portion invested in modest risk company. .
- The choice: Moderate risk company; high risk company, treasury bills, municipal bonds.
- Result: An option is more likely to be selected when it is designed as the status quo.
- Organ donations
- Saving for retirement (opt in or opt out)
- Choosing the first dish in display
\qquad

Explaining default effects

- Effort
- Becoming a organ donor requires effort (as does opting out)
- Implicit endorsement
- I ask "does anybody disagree", it may have been interpreted as "you better not".
- Coordination
- "Raise your hand" may be a coordination game
- "I want to answer the same as everyone else"
- "Nothing" is the best prediction of what others will do
- Besides, I can raise may hand after the others
- Loss aversion
- It is often natural to expect status quo.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fairness

- Q 1a: "A shortage has developed for a popular model of automobile, and customer must wait two months for delivery. A dealer has been selling the car at list price. Now the dealer prices the model $200 \$$ above list price"
- Acceptable (29\%) Unfair (71\%)
- Q 1a: "... A dealer has been selling the car $200 \$$ below list price. Now the dealer prices the model at list price
- Acceptable (58\%) Unfair (42\%)

Liberal paternalism

- We need defaults
- Organ donor or not?
- Many left without a license when they had to choose (no default)
- Join savings plan or not
- There is some food on the first spo
- It is easy to opt out - no one forced (Liberalism)
- Knowing that more people pick the first dish
- Should the healthy or unhealthy be picked first? (Paternalism)
- Caveat
- Suppose one option is good for society another for the individual - Littering, military services..
- Is it acceptable for the government to induce individuals to act against their own self interest, using subtle means like: defaults?

Department of Economics
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Köszegi and Rabin

Utility $u(c \mid r)=m(c)+\eta \mu(c-r)$ with
$m(c)$ being "consumption utility"
$\mu(x)=\left\{\begin{array}{cc}x & x>0 \\ \lambda x & x<0\end{array}\right.$ where $\lambda>1$ represent loss aversion

Many goods, additive utility:
$u(c \mid r)=\sum_{i=1}^{n} m_{i}\left(c_{i}\right)+\eta_{i} \mu\left(c_{i}-r_{i}\right)$ with

Department of Economics

K\&R. Theory of the reference point

- The reference point r is a personal equilibrium (PE) if a person would choose $c=r$ if r where the reference point.
- Generally: the person would lottery F if F where his reference lottery
- There may be many equilibrium:
- A Preferred Personal Equlibrium is the best PE

Department of Economics

\qquad
\qquad
\qquad

(4). instionsititit

Two lotteries. A and B

- A: (100,50\%; 0,50\%) and B: (300,50\%; -100,50\%)
- Utility

$$
u(c \mid r)=2 c-\left\{\begin{array}{l}
r-c \text { if } r>c \\
0 \quad \text { if } c \geq r
\end{array}\right.
$$

- With A as reference:
$-U(B \mid A)=1 / 4(600+600+(-200-200)+(-200-100))=500 / 4=125$
- $U(A \mid A)=1 / 2(200+0)=100<U(B \mid A)$ A not a PE
- With B as reference
$-\mathrm{U}(\mathrm{A} \mid \mathrm{B})=1 / 4((200-200)+200+(0-300)+0)=-100 / 4=-25$
$-U(B \mid B)=1 / 2(600-200)=200>U(A \mid B) B$ is a Personal Equ.

