Dynamics of Small Open Economies

Econ 4330 Open Economy Macroeconomics Spring 2011
Third lecture
Asbjørn Rødseth February 12010

- Small, open economy
- Infinite horizon
- Can borrow and lend abroad
- Can invest in real capital
- Given international real interest rate r constant
- A representative consumer
- Labor supply fixed

The budget equation for period s:

$$
\begin{equation*}
B_{s+1}-B_{s}=Y_{s}+r B_{s}-\left(C_{s}+G_{s}+I_{s}\right), \quad s=t, t+1, t+2, \ldots \tag{1}
\end{equation*}
$$

- B_{s} is net foreign assets at end of period $s-1$

The present value budget constraint:

$$
\begin{equation*}
\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(C_{s}+I_{s}+G_{s}\right) \leq(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} Y_{s} \tag{2}
\end{equation*}
$$

Or the No-Ponzi-game constraint:

$$
\begin{equation*}
L I M=\lim _{T \rightarrow \infty}\left(\frac{1}{1+r}\right)^{T} B_{t+T+1} \geq 0 \tag{3}
\end{equation*}
$$

- PV of expenditures should not exceed initial wealth + PV of future output
- Foreign debt should grow slower than the interest rate
- With an infinite horizon debt can be rolled over forever as long as some of the interest is paid from present income.
- Utility maximization requires that the present value budget constraint is satisfied with equality
- The PV budget constraint presupposes that growth is not forever higher than the interest rate

The model

Utililty function

$$
\begin{equation*}
U_{t}=u\left(C_{t}\right)+\beta u\left(C_{t+1}\right)+\beta^{2} u\left(C_{t+2}\right)+\beta^{3} u\left(C_{t+3}\right)+\cdots=\sum_{s=t}^{\infty} \beta^{s-t} u\left(C_{s}\right) \tag{4}
\end{equation*}
$$

Production functions:

$$
\begin{equation*}
Y_{t}=A_{t} F\left(K_{t}\right), \quad t=1,2, \ldots \tag{5}
\end{equation*}
$$

Accounting relations:

$$
\begin{gather*}
K_{t}=K_{t-1}+I_{t-1}, \quad t=1,2, \ldots \text { (6) } \tag{6}\\
B_{t+1}-B_{t}=r B_{t}+Y_{t}-C_{t}-I_{t}-G_{t}, \quad t=1,2, \ldots \ldots \\
C A_{t}=B_{t+1}-B_{t} \quad t=1,2, \ldots \ldots \tag{8}
\end{gather*}
$$

Budget constraint: (1) or (2)

Optimization

$\operatorname{Max} U_{t}=\sum_{s=t}^{\infty} \beta^{s-t} u\left(C_{s}\right)$
with respect to B_{s+1} and $K_{s+1}, s=t, t+1, \ldots$
given
$C_{s}=(1+r) B_{s}-B_{s+1}+A_{s} F\left(K_{s}\right)-\left(K_{s+1}-K_{s}\right)-G_{s} \quad s=t, t+1, \ldots$.
and given $K_{t}, B_{t}, L I M=0$.
First order condition for B_{s+1} :

$$
\begin{aligned}
\frac{\partial U_{t}}{\partial B_{s+1}}= & \beta^{s-t} u^{\prime}\left(C_{s}\right) \frac{\partial C_{s}}{\partial B_{s+1}}+\beta^{s+1-t} u^{\prime}\left(C_{s+1}\right) \frac{\partial C_{s+1}}{\partial B_{s+1}} \\
& =\beta^{s-t} u^{\prime}\left(C_{s}\right)(-1)+\beta^{s+1-t} u^{\prime}\left(C_{s+1}\right)(1+r)=0
\end{aligned}
$$

Hence, the consumption Euler equation

$$
\begin{equation*}
u^{\prime}\left(C_{s}\right)=\beta(1+r) u^{\prime}\left(C_{s+1}\right) \tag{11}
\end{equation*}
$$

First order condition for K_{s+1} :

$$
\begin{aligned}
\frac{\partial U_{t}}{\partial K_{s+1}} & =\beta^{s-t} u^{\prime}\left(C_{s}\right) \frac{\partial C_{s}}{\partial K_{s+1}}+\beta^{s+1-t} u^{\prime}\left(C_{s+1}\right) \frac{\partial C_{s+1}}{\partial K_{s+1}} \\
& =\beta^{s-t} u^{\prime}\left(C_{s}\right)(-1)+\beta^{s+1-t} u^{\prime}\left(C_{s+1}\right)\left(A_{s+1} F^{\prime}\left(K_{s+1}\right)+1\right)=0
\end{aligned}
$$

or

$$
\beta u^{\prime}\left(C_{s+1}\right)\left(A_{s+1} F^{\prime}\left(K_{s+1}\right)+1\right)=u^{\prime}\left(C_{s}\right)
$$

Or after taking account of the Euler equation

$$
A_{s+1} F^{\prime}\left(K_{s+1}\right)+1=\frac{u^{\prime}\left(C_{s}\right)}{\beta u^{\prime}\left(C_{s+1}\right)}=1+r
$$

and surprise!

$$
\begin{equation*}
A_{s+1} F^{\prime}\left(K_{s+1}\right)=r \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\beta u^{\prime}\left(C_{S+1}\right)}{u^{\prime}\left(C_{S}\right)}=\frac{1}{1+r} \tag{11}
\end{equation*}
$$

The marginal rate of substitution between two subsequent periods should equal the discount rate

$$
\begin{equation*}
A_{s+1} F^{\prime}\left(K_{s+1}\right)=r \tag{12}
\end{equation*}
$$

On the margin the returns from investing in real capital at home and in financial assets abroad should be the same

Consumption and investment decisions can be separated

Time paths of C_{S} and K_{S} can be found from 1.o.conditions, initial conditions and PV budget constraint. Current account and foreign debt follows from accounting rel.

CRRA example again: Solving for $\boldsymbol{C}_{\boldsymbol{t}}$

$$
\begin{equation*}
u(C)=\frac{1}{1-\frac{1}{\sigma}} C^{1-\frac{1}{\sigma}} \tag{13}
\end{equation*}
$$

The Euler equation reduces to

$$
C_{s+1}=[\beta(1+r)]^{\sigma} C_{s}=(1+v) C_{s}
$$

where $v=[\beta(1+r)]^{\sigma}-1$ is the growth rate of consumption.
Hence, $C_{s}=(1+v)^{s-t} C_{t}$,
Consumption grows if $\beta(1+r)>1$
Is $v<r$? Yes, always when $\beta<1$ and $\sigma \leq 1$ (and maybe even when $\sigma>1$).

The present value of consumption is

$$
\begin{equation*}
\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} C_{s}=\sum_{s=t}^{\infty}\left(\frac{1+v}{1+r}\right)^{s-t} C_{t}=\frac{1}{1-\frac{1+v}{1+r}} C_{t}=\frac{1+r}{r-v} C_{t} \tag{14}
\end{equation*}
$$

(Use formula for sum of infinite geometric series, $r>v$).
Recall the present value budget constraint

$$
\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} C_{s}=(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-I_{s}-G_{s}\right)=W_{t}
$$

$W_{t}=$ total wealth (measured at the beginning of period t)
Replacing the Ihs by $(1+r) /(r-v) C_{-} t$
from (14), we find that

$$
\begin{equation*}
C_{t}=\frac{r-v}{1+r} W_{t} \tag{15}
\end{equation*}
$$

$v=0 \quad$ Consume the permanent income from your total wealth.
$v>0$ Consume less than your permanent income if you want a rising consumption path

Consume the part of permanent income that exeeds the desired consumption growth rate

Characterizing the solution for the current account

Define the "permanent" value \tilde{X}_{t} of a variable X_{s}

$$
\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} \tilde{X}_{t}=\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} X_{s}
$$

Use the formula for the sum of an infinite geometric series:

$$
\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}=\frac{1}{1-\frac{1}{1+r}}=\frac{1+r}{r}
$$

Hence,

$$
\frac{1+r}{r} \tilde{X}_{t}=\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} X_{s} \quad \Leftrightarrow \quad \tilde{X}_{t}=\frac{r}{1+r} \sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} X_{s}
$$

W_{t} can then be rewritten

$$
W_{t}=(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-\mathrm{I}_{\mathrm{s}}-G_{s}\right)=(1+r) B_{t}+\frac{1+r}{r}\left(\tilde{Y}_{t}-\tilde{I}_{t}-\tilde{G}_{t}\right)
$$

Hence, the solution for C_{t} can be rewritten

$$
\begin{equation*}
C_{t}=\frac{r-v}{1+r} W_{t}=r B_{t}+\tilde{Y}_{t}-\tilde{I}_{t}-\tilde{G}_{t}-\frac{v}{1+r} W_{t} \tag{16}
\end{equation*}
$$

By definition

$$
\begin{equation*}
C A_{t}=r B_{t}+Y_{t}-C_{t}-I_{t}-G_{t} \tag{17}
\end{equation*}
$$

After inserting for C_{t} from (16)

$$
\begin{equation*}
C A_{t}=Y_{t}-\tilde{Y}_{t}-\left(I_{t}-\tilde{I}_{t}\right)-\left(G_{t}-\tilde{G}_{t}\right)+\frac{v}{1+r} W_{t} \tag{18}
\end{equation*}
$$

- Deviations between actual and permanent values of Y, I and G.
- Total wealth times consumption growth factor (impatience versus interest)

A numerical example

$$
\delta=0.02, \quad \sigma=0.5, \quad r=0.04
$$

$$
\beta(1+r)=\frac{1.04}{1.02} \approx 1.02
$$

$$
[\beta(1+r)]^{\sigma}=1.02^{0.5} \approx 1.01
$$

$$
v=[\beta(1+r)]^{\sigma}-1 \approx 0.01
$$

Propensity to consume out of wealth (from 15):
$\frac{r-v}{1+r}=\frac{0.04-0.03}{1.04} \approx 0.03$
Effect of wealth on current account (from 18):
$\frac{v}{1+r} \approx 0.01$

A Stochastic Current Account Model

- Future levels of output, investment and government spending are stochastic
- Only financial asset is riskless bond which pays a constant interest rate r
- Rational expectations: Agent's expectations are equal to the mathematical conditional expectations based on the economic model and all available information about current and past value of economic variables
- Current values of all exogenous variables are known by all decision makers before decisions are made

Want to look more closely at effect of income shocks

Optimization

Utility function

$$
\begin{equation*}
U_{t}=\mathbf{E}_{\mathrm{t}}\left\{\sum_{s=t}^{\infty} \beta^{s-t} u\left(C_{s}\right)\right\} \tag{19}
\end{equation*}
$$

Same budget equation and constraints, same initial conditions, same procedure.
First order condition with respect to B_{s+1} (compare slide 6):

$$
\mathbf{E}_{\mathrm{t}}\left[\beta^{s-t} u^{\prime}\left(C_{s}\right)(-1)+\beta^{s+1-t} u^{\prime}\left(C_{s+1}\right)(1+r)\right]=0
$$

or

$$
\begin{equation*}
\mathbf{E}_{\mathrm{t}}\left[u^{\prime}\left(C_{s}\right)\right]=\mathbf{E}_{\mathrm{t}}\left[\beta(1+r) u^{\prime}\left(C_{s+1}\right)\right] \quad s=t, t+1, \ldots \tag{20}
\end{equation*}
$$

For $s=t$ this specializes to

$$
\begin{equation*}
u^{\prime}\left(C_{t}\right)=\mathbf{E}_{\mathrm{t}}\left[\beta(1+r) u^{\prime}\left(C_{t+1}\right)\right] \tag{21}
\end{equation*}
$$

First order condition with respect to K_{s+1} (compare slide 8):

$$
\mathbf{E}_{\mathrm{t}}\left[\beta^{s-t} u^{\prime}\left(C_{s}\right)(-1)+\beta^{s+1-t} u^{\prime}\left(C_{s+1}\right)\left(A_{s+1} F^{\prime}\left(K_{s+1}\right)+1\right)\right]=0
$$

For $s=t$ this specializes to

$$
\begin{gathered}
\mathbf{E}_{\mathrm{t}}\left\{\beta u^{\prime}\left(C_{t+1}\right)\left(A_{t+1} F^{\prime}\left(K_{t+1}\right)+1\right)\right\}=u^{\prime}\left(C_{t}\right) \\
\mathbf{E}_{\mathrm{t}}\left\{\frac{\beta u^{\prime}\left(C_{t+1}\right)}{u^{\prime}\left(C_{t}\right)} A_{t+1} F^{\prime}\left(K_{t+1}\right)\right\}+\mathbf{E}_{\mathrm{t}}\left\{\frac{\beta u^{\prime}\left(C_{t+1}\right)}{u^{\prime}\left(C_{t}\right)}\right\}=1
\end{gathered}
$$

Or, after inserting from the consumption Euler equation

$$
\begin{equation*}
\mathbf{E}_{\mathrm{t}}\left\{\frac{\beta(1+r) u^{\prime}\left(C_{t+1}\right)}{u^{\prime}\left(C_{t}\right)} A_{t+1} F^{\prime}\left(K_{t+1}\right)\right\}=r \tag{22}
\end{equation*}
$$

If C_{t+1} and A_{t+1} are correlated, decisions on C and K cannot be separated

The linear-quadratic example

Exogenous endowments $\left(Y_{t}\right)$, no investment.
No trend growth in consumption: $\beta(1+r)=1$
Quadratic utility function

$$
\begin{equation*}
u(C)=C-\frac{a_{0}}{2} C^{2}, \quad a_{0}>0 \tag{23}
\end{equation*}
$$

Euler equation $\mathbf{E}_{\mathrm{t}}\left[u^{\prime}\left(C_{S}\right)\right]=\mathbf{E}_{\mathrm{t}}\left[\beta(1+r) u^{\prime}\left(C_{S+1}\right)\right]$

$$
\begin{gathered}
\mathbf{E}_{\mathrm{t}}\left[1-a_{0} C_{s}\right]=\mathbf{E}_{\mathrm{t}}\left[\beta(1+r)\left(1-\mathrm{a}_{0} \mathrm{C}_{\mathrm{s}+1}\right)\right] \\
1-a_{0} \mathbf{E}_{\mathrm{t}} C_{s}=1-a_{0} \mathbf{E}_{\mathrm{t}} \mathrm{C}_{\mathrm{s}+1} \\
\mathbf{E}_{\mathrm{t}} C_{s+1}=\mathbf{E}_{\mathrm{t}} C_{s} \quad s=t, t+1, \ldots(24)
\end{gathered}
$$

For $s=1$ we get Robert Hall's random walk result:

$$
\begin{equation*}
\mathbf{E}_{\mathrm{t}} C_{t+1}=C_{t} \tag{25}
\end{equation*}
$$

Taking expectations on both sides of the budget constraint, we find

$$
\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} \mathbf{E}_{\mathrm{t}} C_{s}=(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} \mathbf{E}_{\mathrm{t}}\left(Y_{s}-G_{s}\right)=W_{t}
$$

Since $\mathbf{E}_{\mathrm{t}} C_{s+1}=C_{t}$ for all $s>t$, the Ihs is (compare (14))

$$
\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} \mathbf{E}_{\mathrm{t}} C_{s}=\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} C_{t}=C_{t} \frac{1+r}{r}
$$

Hence (compare (15))

$$
\begin{equation*}
C_{t}=\frac{r}{1+r} W_{t}=r B_{t}+\frac{r}{1+r} \sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} \mathbf{E}_{\mathrm{t}}\left(Y_{s}-G_{s}\right) \tag{26}
\end{equation*}
$$

Certainty equivalence: Act as if the expected values were certain to be realized.
Constraints and first-order conditions are linear in all the stochastic variables.
Necessary: Quadratic utility function (dubious) and non-stochastic r.

Impulse- response relations for output shocks

C_{t} is determined by $\mathbf{E}_{\mathrm{t}} Y_{s}, \mathrm{~s}=\mathrm{t}+1, \mathrm{t}+2, \ldots$. How, are these expectations formed?

Example: Consumers believe income follows the stochastic process

$$
\begin{equation*}
Y_{S+1}-\bar{Y}=\rho\left(Y_{S}-\bar{Y}\right)+\varepsilon_{s+1} \tag{27}
\end{equation*}
$$

where $0 \leq \rho \leq 1, \mathbf{E}_{\mathrm{t}} \varepsilon_{s}=0$ for $\mathrm{s}=\mathrm{t}+1, \mathrm{t}+2, \ldots$, and ε_{t} is serially uncorrelated.
ρ is the coefficient of autocoregression.
ρ measures the degree of persistence of the process

$$
\begin{array}{ll}
\rho=0 & Y_{S} \text { varies randomly around } \bar{Y} . \text { No serial correlation. } \\
0<\rho<1 & Y_{S} \text { returns gradually towards } \bar{Y} \text { after a shock. Positive serial corr. } \\
\rho=1 & Y_{S} \text { random walk, no tendency to return to } \bar{Y}, \quad Y_{S+1}-Y_{S}=\varepsilon_{S+1}
\end{array}
$$

Impulse response functions for first-order AR process for different values of ρ

By successive insertions in (27) we find (details on slide 25)

$$
\begin{equation*}
Y_{s}-\bar{Y}=\rho^{s-t}\left(Y_{t}-\bar{Y}\right)+\sum_{i=t+1}^{s} \rho^{i-t} \varepsilon_{i} \tag{28}
\end{equation*}
$$

Take expectations on both sides of (28):

$$
\begin{equation*}
\mathbf{E}_{\mathrm{t}}\left[Y_{s}-\bar{Y}\right]=\rho^{s-t}\left(Y_{t}-\bar{Y}\right) \tag{29}
\end{equation*}
$$

Insert the expectations from (29) in the consumption function (26) and you find (details on slide 26)

$$
\begin{equation*}
C_{t}=r B_{t}+\bar{Y}+\frac{r}{1+r-\rho}\left(Y_{t}-\bar{Y}\right) \tag{30}
\end{equation*}
$$

By definition $C A_{t}=r B_{t}+Y_{t}-C_{t}$. After inserting for C_{t} :

$$
\begin{equation*}
C A_{t}=\frac{1-\rho}{1+r-\rho}\left(Y_{t}-\bar{Y}\right) \tag{31}
\end{equation*}
$$

CA does not depend on B_{t}.

Effect of Y_{t} on C_{t}. (MPC)

$$
\frac{r}{1+r-\rho}
$$

Effect of Y_{t} on $C A_{t}$

$$
\frac{1-\rho}{1+r-\rho}
$$

Impluse response $\rho=0.9, \mathrm{r}=0.04$

Impulse response $\rho=0.5, \mathrm{r}=0.04$

Derivation of (28)

Start from (27) with s=t:

$$
Y_{t+1}-\bar{Y}=\rho\left(Y_{t}-\bar{Y}\right)+\varepsilon_{t+1}
$$

Move forward 1 period:

$$
Y_{t+2}-\bar{Y}=\rho\left(Y_{t+1}-\bar{Y}\right)+\varepsilon_{t+2}
$$

Insert for $Y_{t+1}-\bar{Y}$:

$$
Y_{t+2}-\bar{Y}=\rho^{2}\left(Y_{t}-\bar{Y}\right)+\rho \varepsilon_{t+1}+\varepsilon_{t+2}
$$

Move forward 1 period:

$$
Y_{t+3}-\bar{Y}=\rho\left(Y_{t+2}-\bar{Y}\right)+\varepsilon_{t+3}
$$

Insert:

$$
Y_{t+3}-\bar{Y}=\rho^{3}\left(Y_{t}-\bar{Y}\right)+\rho^{2} \varepsilon_{t+1}+\rho \varepsilon_{t+2}+\varepsilon_{t+3}
$$

Continue until s and you end up with (28).

Derivation of (30)

Start with the consumption function

$$
C_{t}=r B_{t}+\frac{r}{1+r} \sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} \mathbf{E}_{\mathrm{t}} Y_{s}
$$

Add and subtract \bar{Y}.

$$
C_{t}=r B_{t}+\bar{Y}+\frac{r}{1+r} \sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(\mathbf{E}_{\mathrm{t}} Y_{s}-\bar{Y}\right)
$$

Insert for the expectations from (29)

$$
C_{t}=r B_{t}+\bar{Y}+\frac{r}{1+r} \sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} \rho^{s-t}\left(Y_{t}-\bar{Y}\right)
$$

Use the formula for the sum of an infinite geometric series

$$
C_{t}=r B_{t}+\bar{Y}+\frac{r}{1+r-\rho}\left(Y_{t}-\bar{Y}\right)
$$

