The foreign exchange market ECON4330 Lecture 4A

Asbjørn Rødseth

University of Oslo

6th February 2008

Equilibrium with fixed and floating exchange rates

Stock approach versus flow approach

Financial balance sheet

Assets	Govern.	Private	Foreign	Total
Kroner	B_{g}	B_p	B_*	0
Dollars	F_{g}	F_p	F_*	0
Total	$B_g + EF_g$	$B_p + EF_p$	$B_* + EF_*$	0

 B_i = Net kroner assets of sector i

 F_i Net dollar assets of sector i

 $F_{\rm g}=$ Foreign exchange reserves - Government foreign currency debt

$$B_i + EF_i = B_{i0} + EF_{i0}$$

Reallocation of a given portfolio within a short period

Factors determining portfolio choice

Rates of return:

```
i on domestic currency
```

 $i_* + e$ on foreign currency:

 $e = \dot{E}/E$ rate of depreciation, uncertain

Exchange rate expectations e_e (may differ between individuals) Exchange rate risk and risk aversion Capital controls, transaction costs Liquidity needs

a)Perfect capital mobility

Investors care only about expected return Risk neutrality, or no exchange rate risk All have the same expected rate of depreciation, $e_{\rm e}$

Only equilibrium:

$$i = i + e_e$$

Uncovered interest parity UIP

Investors are indifferent between B and F when UIP holds

b)Portfolio choice with imperfect capital mobility

Define the risk premium on kroner: $r = i - i_* - e_e$

$$W_{p} = \frac{B_{p0} + EF_{p0}}{P} = \frac{B_{p} + EF_{p}}{P}$$

$$\frac{EF_{p}}{P} = f(r, W_{p})$$

$$\frac{B_{p}}{P} = W_{p} - f(r, W_{p})$$

 $f_r < 0$ Higher risk premium on the domestic currency \Longrightarrow Portfolio shift from foreign to domestic currency $0 < f_W < 1$ An increases in wealth will be invested in both currencies.

Diversification

Portfolio choice of the foreign sector

$$W_{*} = \frac{B_{*0}/E + F_{*0}}{P_{*}} = \frac{B_{*}/E + F_{*}}{P_{*}}$$

$$\frac{B_{*}}{EP_{*}} = b(r, W_{*})$$

$$\frac{F_{*}}{P_{*}} = W_{*} - b(r, W_{*})$$

 $b_r > 0.0 < b_W < 1$

The supply of foreign currency

$$F_g = -F_p - F_*$$

$$F_g = -\frac{P}{E}f(r, W_p) - P_*[W_* - b(r, W_*)]$$

$$F^{S}(E, i - i_{*}) = -\frac{P}{E}f(i - i_{*} - e_{e}(E), \frac{B_{p0} + EF_{p0}}{P})$$
$$-P_{*}[\frac{B_{*0}/E + F_{*0}}{P_{*}} - b(i - i_{*} - e_{e}(E), \frac{B_{*0}/E + F_{*0}}{P_{*}})]$$

E has 1) A portfolio composition effect and 2) An expectations effect Equilibrium condition determines F_g under fixed rates, E under floating.

1) The portfolio composition effect

$$E \uparrow \Longrightarrow \frac{EF_{p0}}{P} \uparrow$$
 Wealth goes up

Investors want to keep only a fraction f_W of the capital gain in foreign currency.

The remainder $1 - f_W$ is invested in domestic currency.

Investors sell an amount of foreign currency equal to $1-f_W$ times the capital gain.

Supply of foreign currency to CB goes up.

Assumptions made:

 $F_{p0} > 0$ There is a capital gain.

 $f_W < 1$ Not all capital gains are invested in foreign currency.

Rebalancing of the portfolio

2. The expectations effect

Assume regressive expectations $e'_e < 0$ Example:

$$e_e = \alpha \frac{E_e - E}{E}$$
 $\alpha > 0$

 E_e expected future exchange rate, constant α speed of convergence

$$E \uparrow \Longrightarrow e_e \downarrow \Longrightarrow r \uparrow$$

Lower expected return on foreign currency

Sell foreign currency, buy domestic currency $(f_r < 0)$

Supply of foreign currency to CB goes up

The slope of the supply curve

$$\frac{\partial F^{S}}{\partial E} = \frac{P}{E^{2}} \gamma - \frac{P}{E} \kappa e_{e}'$$

where

$$\gamma = (1 - f_W) \frac{EF_{p0}}{P} + (1 - b_W) \frac{B_{*0}}{P}$$

and

$$\kappa = -f_r + \frac{EP_*}{P}b_r > 0$$

 κ measures the degree of capital mobility between the two currencies γ measures the product of the exposure that each country has to the other currency and the share of capital gains that they will bring home.

Sufficient conditions for a positive slope are:

$$F_{p0} > 0$$
, $B_{*0} > 0$, $f_W < 1$, $b_W < 1$, $e'_e < 0$

Floating: The effect of *i* on *E*

Equilibrium condition:

$$F_g = F^S(E, i - i_*)$$

Differentiate:

$$dF_g = \frac{\partial F^S}{\partial E} dE + \frac{\partial F^S}{\partial i} di = 0$$

or

$$\frac{dE}{di} = -\frac{\frac{\partial F^{S}}{\partial i}}{\frac{\partial F^{S}}{\partial E}} = -\frac{\kappa}{\gamma/E - \kappa e'_{e}} < 0$$

$$\kappa \to \infty \Longrightarrow \frac{dE}{di} \to \frac{1}{e'_e}$$

High capital mobility increases the effect of i on E. The effect need not be great though $i=i_*+e_e(E)$ and $e_e(E)=\alpha\frac{E_e-E}{E}$ implies:

$$E = \frac{E_{\rm e}}{\alpha + i - i_*}$$

Expectations are crucial when capital mobility is high

Floating: The effect of an intervention

$$F_g = F^S(E, i - i_*)$$
$$dF_g = \frac{\partial F^S}{\partial E} dE$$

$$\frac{dE}{dF_g} = \frac{1}{\frac{\partial F^S}{\partial F}} = \frac{1}{(P/E^2)\gamma - (P/E)\kappa e_e'} > 0$$

CB buys foreign currency, the price of foreign currency goes up

CB sells domestic currency, domestic currency depreciates

$$\kappa \to \infty \Longrightarrow \frac{dE}{dF_g} \to 0$$

Signalling effects

Fixed rate: The cost of keeping $i \neq i_*$

Assume $e_e = 0$ (credible fix) CB's balance sheet:

$$B_g + EF_g = B_{g0} + EF_{g0}$$

High capital mobility

 $i >> i_* \Longrightarrow F_g$ large positive, B_g large negative.

 $i << i_* \Longrightarrow F_g$ large negative, B_g large positive.

CB borrows at high rate, lends at low rate in both cases

Large deviations from interest rate parity in both directions have a cost

Reserves may run out if i is set too low

 $\kappa \to \infty$ The cost of even small deviations from $i = i_*$ becomes enormous

High confidence in a fixed rate

- → Little exchange rate risk
- $ightarrow e_e = 0$ and κ large
- \rightarrow Must have $i \approx i_*$

Defence of a fixed rate against $e_e \neq 0$

Assume $e_e > 0$ Devaluation expected

 $e_e \uparrow, \kappa$ large \rightarrow large loss of reserves Loss of reserves can be prevented if r is kept constant $di = de_e$ Problem: Extremely high short term rates may be required

Troblem. Extremely high short term rates may be rec

Usual strategy:

$$i_* < i < i_* + e_e, \qquad dF_g < 0, \quad dB > 0$$
 CB profits if $e < i - i_*$
Speculators profit if $e > i - i_*$

Defence difficult because

Reserves may run out.

Defence with extremely high i is not credible. Fear of debt crisis.

Fear of losses if CB must give in.

$e_e < 0$ Revaluation expected

Reserves cannot run out Impossible to have negative *i*

Perfect capital mobility:

Interventions ineffective

Interest rate the only instrument which can keep the exchange rate fixed

Responses:

Mutual fixing Currency boards Wide margins

The current account

$$F_g = -\frac{P}{E}f(r, W_p) - P_*[W_* - b(r, W_*)]$$

Assume P, P_* , E, i, i_* constant over time

$$\dot{F}_{g} = -\frac{P}{E} f_{W} \dot{W}_{p} - P_{*} (1 - b_{W}) \dot{W}_{*}$$
 (1)

$$W_p + W_g + \frac{EP_*}{P}W_* = 0$$

 $\dot{W}_p = -\dot{W}_g - \frac{EP_*}{P}\dot{W}_*$

Inserted in (1):

$$\dot{F}_g = \frac{P}{E} [1 - f_W - b_W] (-\dot{W}_*) + \frac{P}{E} f_W \dot{W}_g$$
 (2)

Condition for a current account surplus to increase reserves: