Traded and non-traded goods ECON4330 Spring 2010 Lecture 12

Asbjørn Rødseth

University of Oslo

April 29, 2010

Different market structures

Mundell-Fleming

- all goods are traded
- law of one price holds for all goods
- producers are price setters, even small countries have market power

Alternatives

- non-traded goods
- competitive international markets
- pricing to market (price discrimination)
- local currency pricing
- multinationals, outsourcing

Assumptions

- Small open economy
- Two goods:
 - traded, subscript t
 - ▶ non-traded, subscript *n*
- Producers of traded goods are price takers
- Labor is mobile between sectors
- Nominal wage given
- Fixed exchange rate

Short-run equilibrium

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Effect of increased G_n

Devaluation

increase has the opposite effect of a devaluation

Medium-run dynamics

The temporary equilibrium:

$$N = N(\omega_t, G_n, \tau) \tag{1}$$

 $\omega_t = W/EP_* = \Pi_t^{-1} = \text{real wage}$ Phillips curve:

$$\frac{\dot{\omega}_t}{\omega_t} = \gamma [N(\omega_t, G_n, \tau) - \bar{N}]$$
 (2)

Negative feed-back: High ω_t means $\dot{\omega}_t$ negative Stationary equilibrium:

$$N(\omega_t, G_n, \tau) = \bar{N} \tag{3}$$

Wage dynamics

government expenditure - Smaller traded-goods sector

The Scandinavian model of inflation: Assumptions

- Two industries, traded and non-traded
- Small country, price taker for traded goods
- Fixed exchange rate
- Constant labor shares
- Same wages in both sectors

The Scandinavian model of inflation: Equations

$$p_t = e + p_{t*} \tag{1}$$

$$w = p_t + a_t \tag{2}$$

$$p_n = w - a_n (3)$$

$$p = \alpha p_n + (1 - \alpha)p_t \tag{4}$$

Endogenous: p_t , p_n , p and w. Exogenous: p_{t*} , e, a_t and a_n .

Symbols

- p_t Traded goods inflation \dot{P}_t/P_t
- p_n Non-traded goods inflation $\dot{P_n}/P_n$
- p_{t*} Traded goods inflation abroad $\dot{P_{t*}}/P_{t*}$
 - p Average rate of inflation
 - *e* Rate of depreciation \dot{E}/E
 - w Rate of wage increases \dot{W}/W
 - at Rate of productivity growth in t-industry
 - a_n Rate of productivity growth in n-industry
 - α Weight on non-traded goods in the consumer price index

Solution: Fixed exchange rate

Wage growth determined by imported inflation and productivity growth in t-industry (insert (1) in (2)):

$$w = e + p_{t*} + a_t \tag{5}$$

Price growth on n-goods:

$$p_n = w - a_n = e + p_{t*} + a_t - a_n$$
 (6)

Overall inflation rate determined by imported inflation and gap in productivity growth:

$$p = e + p_{t*} + \alpha(a_t - a_n) \tag{7}$$

Growth in real wage

$$w - p = \alpha a_n + (1 - \alpha)a_t \tag{8}$$

Summary of results

Nominal wage growth determined by the "scope", the sum of

- productivity growth in t-industry
- price increases on t-goods

Overall inflation determined by

- imported inflation (price growth on t-goods)
- the gap in productivity growth between the *t* and *n*-industries.

Real wage growth determined by

- average productivity growth in the economy

Some questions

- Why fixed labor share?
 - Cobb-Douglas?
 - Monopolistic pricing in n-industry?
 - Property of bargaining outcome in t-industry?
 - Property of steady state when the required rate of return on capital is constant (perhaps given in international capital markets)
- Descriptive or normative?
- What if exchange rate is floating?

Solution: Inflation target

Same equations but $p = \bar{p}$ exogenous, e endogenous Twist equation for growth in real wage (8):

$$w = \bar{p} + \alpha a_n + (1 - \alpha) a_t \tag{9}$$

$$p_n = w - a_n = \bar{p} + (1 - \alpha)(a_t - a_n)$$
 (10)

$$p_t = w - a_t = \bar{p} + \alpha(a_n - a_t) \tag{11}$$

$$e = p_t - p_{t*} = \bar{p} - p_{t*} + \alpha(a_n - a_t)$$
 (12)

Results: Inflation target

- Nominal wage growth equal to inflation target plus average productivity growth
- > Real wage growth equal to average productivity growth
- Nominal rate of depreciation determined by
 - difference between inflation target and international inflation on traded goods
 - sectoral gap in productivity growth

Bringing in the rest of the world

Assume:

- same equations
- same share of non-traded goods
- always inflation target \bar{p}_*

Analogous to (11):

$$p_{t*} = w_* - a_{t*} = \bar{p}_* + \alpha(a_{n*} - a_{t*})$$
 (13)

Also

$$w_t - a_t = p_t = e + p_{t*} = e + w_{t*} - a_{t*}$$

Real exchange rates

Irrespective of monetary regime at home:

$$w - a_t = e + w_* - a_{t*} (14)$$

$$p = e + \bar{p}_* + \alpha[(a_t - a_n) - (a_{t*} - a_{n*})]$$
 (15)

- (14) Implies constant real exchange rate in terms of unit wage costs for traded goods
- (15) Implies relative PPP in consumer prices, but only if sectoral gaps in productivity growth are equal
- (15) Can be used to determine p under fixed rates, e under inflation targeting

A wider context

Scandinavian model describes the relationship between the growth rates of prices and wages in the steady state of a dynamic two-sector model with:

- Competitive markets
- Homogenous production functions in labor and capital in both markets
- Labor mobile between sectors
- Capital for financing investments can be obtained from competitive international markets at a constant real rate

The dynamic model determines *levels*, not just rates of change (CH. 7.4-7.5)

Temporary deviations from the "main course"

Links between profitability, wage growth and investment help produce convergence to steady state

Wage formation as a stabilizing mechanism

Simplify:

- No productivity growth
- Prices on n-goods always grow with the same rate as wages

Assume wage growth determined by:

$$\dot{W}/W - \dot{P}_t/P_t = G(N(W/P_t), W/P_t)$$
(16)

- 1. Demand pressure in the labor market, $G_1 > 0$
- 2. Profitability in traded goods industry, $G_2 < 0$

Define real wage $\omega_t = W/P_t$, write (16) as

$$\dot{\omega_t} = G(N(\omega_t), \omega_t) \tag{17}$$

$$\dot{\omega}_t = G(N(\omega_t), \omega_t)$$

Stable differential equation in ω_t (assuming N' < 0)

$$\frac{d\dot{\omega}_t}{d\omega_t} = G_1 N' + G_2 < 0$$

Conclusions

- \triangleright In steady state $\dot{\omega}_t=0$, $\dot{w}=\dot{e}+\dot{p}_{t*}$, and the equations of the Scandinavian model holds
- ▷ Concern in wage bargaining for profitability of t-industry contributes to stability irrespective of monetary regime
- \triangleright Shifts in labor demand may produce equilibria with different levels of N and ω_t (see Ch. 7.3).
- ▶ Active use of the interest rate still required to produce nominal stability both with an exchange rate target and an inflation target

Caution: An equilibrium with a high W/P_t can be undermined in the long run by lack of investment in traded-goods industry.