Problem 1 (60%)

Explain in your own words.

- Explain the double marginalization problem and explain at least two possible ways vertically related monopolies can design their contracts in order to avoid this problem.
- b) Explain why markets with incompatible network goods have a tendency to be dominated by a single good.
- c) Explain the concept of two-sided markets and provide a theoretical argument for why social networks charge advertisers to place ads on their site, but let the users use their service for free.
- d) In sealed-bid second-price auctions the optimal strategy is to bid your true valuation. Explain why this isn't the case in first-price auctions.
- e) Does the optimal strategy in a first-price auction involve bidding closer to, or farther from, your true valuation as the number of competing bidders in the auction increases? Explain!
- f) Consider a pair of competing firms where one firm has a high-quality product and the other has a low-quality product. Explain why it isn't always profitable for the low-quality producer to raise his quality, even if it didn't cost anything to do so.
- g) Consider a game where two firms selling perfect substitutes compete in quantities with sequential moves. Explain why there is a first-mover advantage and why the advantage hinges on the first-mover's ability to commit to his action.
- h) Consider again a game where two firms selling perfect substitutes, but now the firms compete in prices with sequential moves. Explain why there is now a second-mover advantage.
- i) Explain why two firms who compete in quantities end up producing more, and earning lower profits, than a monopolist firm would.

Problem 2 (40%)

In this problem there are N firms. Each firm produces a quantity q_i of a homogeneous good, to a common marginal cost of zero. The inverse demand in the market is given by p=1-Q, where Q is total quantity supplied, $Q=\sum_i q_i$.

- a) Let Q_{-i} be the output of the other firms, from firm i's perspective: $Q_{-i} = \sum_{j \neq i} q_j$. Explain the problem that we assume each firm solves and derive the best response function for firm i.
- b) Assume a symmetric Nash Equilibrium and show that the aggregate output will be given by

$$Q^{NE} = \frac{n}{(n+1)}$$

c) Derive the equilibrium price and the equilibrium per-firm profits.

- d) Assume that there are three firms (n = 3), and that two of them merge so that only two firms are left. As the model is formulated, would there be any synergies in such a merger?
- e) Explain what would happen to aggregate profits, the joint profits of the two merging firms and the consumer surplus following such a merger.
- f) If the two remaining firms merge, so that only a single monopolist firm is left, will the two firms find such a merger profitable? Explain.
- g) Assume now that there are some fixed costs of operating, such that per-firm profits are $\Pi(n)=pq_i-e$, and that e=1/20. Assume that there is free entry. How many firms will find it profitable to enter in a free-entry equilibrium?
- h) Assume that from the free-entry equilibrium, two of the firms consider merging, and that no further entry is possible after the merger. Would that merger be profitable? Explain!
- i) If we instead assume that new firms are allowed to enter the market following the merger, under the same assumptions as in the free-entry equilibrium, would any potential entrant find such entry profitable? Explain why considering entry barriers is important when consider the competitive effects of the merger.