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Horizontal product differentiation 
 
How far does a market extend? 
Which firms compete with each other? 
What is an industry? 
 
 
Products are not homogeneous. 
Exceptions: petrol, electricity. 
 
But some products are more equal to each other than to 
other products in the economy. These products constitute 
an industry. 
 
 
A market with product differentiation. 
 
 
But: where do we draw the line? 
 
Example: 

- beer vs. soda? 
- soda vs. milk? 
 
- beer vs. milk? 
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Two kinds of product differentiation 
 
(i) Horizontal differentiation: Consumers differ in their 

preferences over the product’s characteristics. 
Examples: colour, taste, location of outlet. 

 
(ii) Vertical differentiation: Products differ in some 

characteristic in which all consumers agree what is 
best. Call this characteristic quality. 
(quality competition) 

 
 
 
Horizontal differentiation 
 
Two questions: 
 
1. Is the product variation too large in equilibrium? 
 
2. Are there too many variants in equilibrium? 
 
 
Question 1: A fixed number of firms. Which product 
variants will they choose? 
 
Question 2: Variation is maximal. How many firms will 
enter the market? 
 
The two questions call for different models. 
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Variation in equilibrium 
 
Will products supplied in an unregulated market be too 
similar or too different, relative to social optimum? 
 
 
Hotelling (1929) 
 
Product space: the line segment [0, 1]. 
Two firms: one at 0, one at 1. 
 
 
 
 
 
Consumers are uniformly distributed along [0, 1]. 
A consumer at x prefers the product variety x. 
 
Consumers have unit demand: 
 
    p 
 
    s 
 
 
 
 
           1      q 
 

x  0 1 
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Disutility from consuming product variety y: 
t(|y – x|) – ‘‘transportation costs” 

 
Linear transportation costs: t(d) = td 
 
Generalised prices (with firm 1 at 0 and firm 2 at 1): 

p1 + tx and p2 + t(1 – x) 
 
 
 
 
 
 
 
 
 
 
 
 
The indifferent consumer: x%  
 
s – p1 – t x%  = s – p2 – t(1 – x% ). 
 

 ( ) 2 1
1 2

1,
2 2

p px p p
t
−

⇒ = +%  

 
[But check that: (i) 0 ≤ x%  ≤ 1; (ii) x%  wants to buy.]  

x 

s – p1– tx 

s – p2 – t(1 – x)

( )1 2,x p p%  
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Normalizing the number of consumers: N = 1 (thousand) 
 

D1(p1, p2) = x%  = 
t

pp
22

1 12 −+  

D2(p1, p2) = 1 – x%  = 
t
pp

22
1 21 −+  

 
Constant unit cost of production: c 
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Price competition. 
 

Equilibrium conditions: 0
1

1 =
∂
∂
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π ; 0

2

2 =
∂
∂

p
π  

 
FOC[1]: 
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⇒ FOC[1]:   2p1 – p2 = c + t 
 
 FOC[2]:   2p2 – p1 = c + t 
  
⇒ p1* = p2* = c + t 
 



Tore Nilssen – Horizontal product differentiation – Slide 6 

• The indifferent consumer does want to buy if: 
tcs

2
3+≥  

 
• Prices are strategic complements: 

0
2
1

21

1
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>=
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∂
tpp

π  

 
    Best-response function: p1 = ½(p2 + c + t) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The degree of product differentiation: t 
 
Product differentiation makes firms less aggressive in their 
pricing. 
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But are 0 and 1 the firms’ equilibrium product variations? 
 
Two-stage game of product differentiation: 
 
Stage 1: Firms choose locations on [0, 1]. 
 
Stage 2: Firms choose prices. 
 
 
Linear vs. convex transportation costs. 

• Convex costs analytically tractable but 
economically less meaningful? 

 
Assume quadratic transportation costs. 
 
Stage 2: 
Firms 1 and 2 located in a and 1 – b, a ≥ 0, b ≥ 0, a + b ≤ 1. 
 
The indifferent consumer: 
 
p1 + t( x%  – a)2 = p2 + t(1 – b – x% )2 
 

( ) ( )
2 11 1

2 2 1
p px a a b

t a b
−

= + − − +
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%  

 
D1(p1, p2) = x% ,   D2(p1, p2) = 1 – x%  
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Equilibrium conditions: 0
1

1 =
∂
∂

p
π ; 0

2

2 =
∂
∂

p
π  

 
FOC[1]:   2p1 – p2 = c + t(1 – a – b)(1 + a – b) 

 
 FOC[2]:   2p2 – p1 = c + t(1 – a – b)(1 – a + b) 
 
Equilibrium: 
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• Symmetric location: a = b ⇒ p1 = p2 = c + t(1 – 2a) 
 
• A firm’s price decreases when the other firm gets closer: 

01 <db
dp . 

 
• Stage-2 outcome depends on locations: 

p1 = p1(a, b),  p2 = p2(a, b) 
 
 
Stage 1:  
 
π1(a, b) = [p1(a, b) – c]D1(a, b, p1(a, b), p2(a, b)) 
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Moving toward the middle: 
A positive direct effect vs. a negative strategic effect. 
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Equilibrium: a* = b* = 0. 
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Strategic effect stronger than direct effect. 
Maximum differentiation in equilibrium. 
 
 
Social optimum: 
 
No quantity effect. Social planner wants to minimize total 
transportation costs. (Kaldor-Hicks vs. Pareto) 
 
In social optimum, the two firms split the market and locate 
in the middle of each segment: ¼ and ¾. 
 
In equilibrium, product variants are too different. 
 
• Crucial assumption: convex transportation costs. 
 
• Also other equilibria, but they are in mixed strategies. 

[Bester et al., ‘‘A Noncooperative Analysis of Hotelling’s 
Location Game”, Games and Economic Behavior 1996] 

 
• Multiple dimensions of variations: Hotelling was almost 

right 
[Irmen and Thisse, ”Competition in multi-characteristics spaces: 
Hotelling was almost right”, Journal of Economic Theory 1998] 

 
• Head-to-head competition in shopping malls: Consumers 

poorly informed? 
 
 
Have we really solved the problem whether or not the 
equilibrium provision of product variants has too much or 
too little differentiation? 
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Too many variants in equilibrium? 
 
A model without location choice. 
 
Focus on firms’ entry into the market. 
 
The circular city 
 
 
 
 
 
 
Circumference: 1 
Consumers uniformly distributed around the circle. 
Number of consumers: 1 
Linear transportation costs: t(d) = td 
Unit demand, gross utility = s 
 
Entry cost: f 
 
Unit cost of production: c 
 
Profit of firm i:   πi =  (pi – c)Di – f, if it enters, 
     0, otherwise 
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Two-stage game: 
 
Stage 1: Firms decide whether or not to enter. Assume 
entering firms spread evenly around the circle. 
 
Stage 2: Firms set prices. 
 
If n firms enter at stage 1, then they locate a distance 1/n 
apart. 
 
 
Stage 2: Focus on symmetric equilibrium. 
 
If all other firms set price p, what then should firm i do? 
 
Each firm competes directly only with two other firms: its 
neighbours on the circle. 
 
At a distance x~ in each direction is an indifferent 
consumer: 
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Demand facing firm i: 
 

  Di(pi, p) = 2 x~ = 
t
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Firm i’s problem: 
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In a symmetric equilibrium, all prices are equal. ⇒ pi = p. 
 

  
n
tcp +=  

 
Stage 1: 
How many firms will enter? 
 

Di = 
n
1  
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π = 0 ⇒ 
f
tn =   
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Condition: Indifferent consumer wants to buy: 
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Exercise 7.3: What if transportation costs are quadratic? 
 
[Exercise 7.4: What if fixed costs are large?] 
 
 
Social optimum: Balancing transportation and entry costs. 
 

Average transportation cost: t x~
2
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n
t

2
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The social planner’s problem: 
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Too many firms in equilibrium. 
  
Private motivation for entry: business stealing 
Social motivation for entry: saving transportation costs 
 
 
[Exercise: What happens with ne/n* as N (number of consumers) grows?] 
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Advertising 
 
• informative 
• persuasive 
 
Persuasive: shifting consumers’ perferences? 
 
Focus on informative advertising. 
 
Hotelling model, two firms fixed at 0 and 1, consumers 
uniformly distributed across [0,1], linear transportation 
costs td, gross utility s. 
 

A consumer is able to buy from a firm if and only if he has 
received advertising from it. 
 

ϕi – fraction of consumers receiving advertising from firm i 
 

Advertising costs: Ai = Ai(ϕi) = 2

2 i
aϕ  

 
Potential market for firm 1: ϕ1. 
Out of these consumers, a fraction (1 – ϕ2) have not 
received any advertising from firm 2. 
The rest, a fraction ϕ2 out of ϕ1, know about both firms. 
 
Firm 1’s demand: 

 D1 = ϕ1[(1 – ϕ2) + ϕ2 ⎟
⎠
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⎜
⎝
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+
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A simultaneous-move game. 
 
Each firm chooses advertising and price. 
 
 
Firm 1’s problem: 
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Two FOCs for each firm. 
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Firms are identical ⇒ Symmetric equilibrium 
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Condition: s ≥ c + t + at2   (≥ c + 2t) 
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Firms’ profit: 
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An increase in advertising costs increases firms’ profits. 
 
Two effects of an increase in a on profits: 
 
A direct, negative effect. 
An indirect, positive effect: a ↑  →  ϕ↓  →  p↑ 
 
Firms profit collectively from more expensive advertising. 
 
Crucial assumption: convex advertising costs. 
 
What about the market for advertising? 
  [Kind, Nilssen, & Sørgard, Journal of Media Economics 2007] 
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Social optimum 
 
Average transportation costs 

among fully informed consumers: t/4. 
 among partially informed consumers: t/2. 
 
 
The social planner’s problem: 
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[Condition: t ≤ 2(s – c)] 
 
Special cases: 
(i) 

t
a  → 

2
1 : 

ϕe → 1 

ϕ* → ( ) tcs
t

−−
−

4
1  < 1 

Too much advertising in equilibrium 

(ii) 
t
a  → ∞: 

ϕe → 0 

ϕ* → 
cs

a
−

+1
1  > 0 

   Too little advertising in equilibrium 


