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Corrections and comments to the seminar exercises

Some students have very kindly informed me about small mistakes and misunder-
standings in the seminar exercises. I post a summery here with the remarks

Seminar 1

In the Uniformly mixing flow pollutant exercise:

8. If the firm sets the price P , the consumer will purchase abatement until his
marginal willingness to pay, in units of xi, for reduced emissions equals the
price.

9. The marginal willingness to pay for abatement in the initial situation in must
be greater than P . Since we don’t know what the utility function looks like
(or the price P ), we cannot determine whether this inequality holds.

10. Note that if consumer 1 has contributed everything he prefers (given that
he thinks others will contribute nothing), and everyone has the same prefer-
ences, then the first consumer has already secured that level of E that any
other individual would be willing to secure. Thus, all other consumers will
be free-riders.

Seminar 2.

Yes, it can be hard to grasp why the license price in district 1 goes to zero.
Recall that the same emission unit from firm i has different harm on the different
locations. Each locations refers to a license market. The regulator has distributed
an equal amount of licenses in each market j. Since the harm in district 2 is twice
as high as in district 1, the firm never needs to buy licenses in market 1, such that
the license market in district 1 never binds and the price goes to zero p1 = 0
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Seminar 4.

The formulas for the deadweight losses in the seminar exercises are wrong... The
correct are:

DWLp =

(
B′(q(p̄))− C ′(q(p̄))

)(
q(p∗∗)− q(p̄)

)
2

DWLq =

(
B′(q̄)− C ′(q̄)

)(
q∗∗ − q̄

)
2

And since the two death weight losses are of equal size, we can also write them as:

DWLp =

(
C ′(q(p̄))−B′(q(p̄))

)(
q(p̄)− q(p∗∗)

)
2

DWLq =

(
C ′(q̄)−B′(q̄)

)(
q̄ − q∗∗

)
2

Part I: Full info

� To implement q∗ using a quantity instrument: Quota sets q = q∗

SWquota = B(q∗)− C(q∗)

B(0) + βq∗ − 1

2
bq∗2 − C(0)− aq∗ − 1

2
cq∗2(

B(0)− C(0)
)
+ (β − a)q∗ − 1

2
(b+ c)q∗2

NB(0) +
(β − a)2

2(b+ c)
= SWquota

� To implement q∗ using a price instrument: Firm max profit π = pq − C(q),
which gives FOC: p = MC(q∗)

p = a+ cq∗

p = a+ c
(β − a

b+ c

)
=

cβ + ab

b+ c

The Planner sets the price p = MB(q∗)

p = β − bq∗ = β − b
(β − a

b+ c

)
=

cβ + ab

b+ c[
B(q(p∗)) + p∗q(p∗)

]
−
[
C(q(p∗)) + p∗q(p∗)

]
= B(q∗)− C(q∗) = SWquota

Which is exactly the same as SWquota
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� Which instrument is better in terms of maximizing the social welfare? Given
complete information, prices and quotas are equally good instruments for
regulation, giving the same welfare

Part II: Incomplete info: Quota instrument

Suppose the regulator sets a quota of q̄. Deadweight loss above the optimum:

1/2(q̄ − q∗∗)
[
MC(q̄)−MB(q̄)

]
1/2(q̄ − q∗∗)

[
θ + γ + cq̄ − β + bq̄

]
1/2(q̄ − q∗∗)

[
− (β − θ − γ) + q̄(b+ c)

]
insert q∗∗ = β−θ−γ

b+c
→ q∗∗(b+ c) = (β − θ − γ)

1/2(q̄ − q∗∗)
[
− q∗∗(b+ c) + q̄(b+ c)

]
1/2(q̄ − q∗∗)(q̄ − q∗∗)(b+ c)

b+ c

2
(q̄ − q∗∗)2

Next, show that the expected deadweight loss if the quantity q̄ is imposed is:

E[DWL] =
1

2

(b+ c)

2

[β − γ − δ

(b+ c)
− q̄

]2
+

1

2

(b+ c)

2

[β − γ + δ

(b+ c)
− q̄

]2
Show that the best quantity to impose ex-ante is to minimize the expected DWL:

q̂ argmin
q̄

{
E[DWL]

}
q̂ argmin

q̄

{(b+ c)

4

[(β − γ − δ

(b+ c)
− q̄

)2

+
(β − γ + δ

(b+ c)
− q̄

)2]}
q̂(b+ c)− β − γ − δ

2
− β − γ + δ

2
= 0

q̂ =
β − γ

b+ c

q̂ is the best quantity to impose ex ante. Next, show that the expected deadweight
loss when q̂ is imposed is:

E[DWL] =
(b+ c)

4

[(β − γ − δ

(b+ c)
− q̂

)2

+
(β − γ + δ

(b+ c)
− q̂

)2]
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insert q̂:

=
(b+ c)

4

[(β − γ − δ

b+ c
− β − γ

b+ c

)2

+
(β − γ + δ

b+ c
− β − γ

b+ c

)2]
=

(b+ c)

4

[( −δ

b+ c

)2

+
( δ

b+ c

)2]
L̂q =

δ2

2(b+ c)

Interpret this expression.

Part III: Incomplete info: Price instrument
The firm maximize profit π = pq − C(q), and this gives p = C ′(q):

p̄ = MC = γ + θ + cq

q(p̄, θ) =
p̄− γ − θ

c

The optimal price (p) for a given θ

MB(q(p∗∗, θ)) = MC(q(p∗∗, θ))

β − b
(p∗∗ − γ − θ

c

)
= γ + θ + c

(p∗∗ − γ − θ

c

)
p∗∗ =

βc+ b(γ + θ)

b+ c

which is the optimal emission price

q(p∗∗, θ) =
β − γ − θ

b+ c

Next, show that the expected deadweight loss if price p is imposed before the value
of θ is realized is:

E[DWL] =
1

2

[b+ c

2

(
q(p̄)− q(p∗∗)

)2]
+

1

2

[b+ c

2

(
q(p̄)− q(p∗∗)

)2]
E[DWL] =

(b+ c)

4

[( p̄− γ + δ

c
− β − γ + δ

(b+ c)

)2

+
( p̄− γ − δ

c
− β − γ − δ

(b+ c)

)2]
Minimize the expected deadweight loss:

p̂ argmin
p̄

{
E[DWL]

}
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p̂ argmin
p̄

{(b+ c)

4

[( p̄− γ + δ

c
− β − γ + δ

(b+ c)

)2

+
( p̄− γ − δ

c
− β − γ − δ

(b+ c)

)2]}
Show that, at the optimal ex ante price p̂, the expected dead weight loss is:

E[DWL] =
(b+ c)

4

[( p̂− γ + δ

c
− β − γ + δ

(b+ c)

)2

+
( p̂− γ − δ

c
− β − γ − δ

(b+ c)

)2]
insert for p̂ = bγ+cβ

b+c
and find L̂p:

=
(b+ c)

4

[( bγ+cβ
b+c

− γ + δ

c
− β − γ + δ

(b+ c)

)2

+
( bγ+cβ

b+c
− γ − δ

c
− β − γ − δ

(b+ c)

)2]
=

(b+ c)

4

[(bγ + βc+ bδ − bγ − βc

c(b+ c)

)2

+
(bγ + βc− bδ − bγ − βc

c(b+ c)

)2]
L̂p =

δ2

2(b+ c)

(b
c

)2

Interpret this expression.

Seminar 5.

In the Deforestation exercise:
It is the same whether we write vi as the disutility of deforestation xi, or as

the positive utility value of conservation (X − xi)

Discounting exercise:

question 2. How much should one discount future consumption, if the growth rate of
consumption is 2% a year?

� Start out with the Euler equation:

e−rtu′(c0) = e−ρtu′(ct) (1)

ln e−rt + lnu′(c0) = ln e−ρt + lnu′(ct)

−rt+ lnu′(c0) = −ρt+ lnu′(ct)

� Take the derivative wrt time

−r = −ρ+
u′′(ct)

u′(ct)
ċ

−r = −ρ+
u′′(ct)ct
u′(ct)

ċ

ct
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� Where the elasticity of substitution is defined as u′′(ct)ct
u′(ct)

≡ −ηt, and the

consumption growth rate is defined as ċ
ct
≡ µt:

r = ρ+ ηtµt

� Find the value of η when our utility function is given by ut(ct) = 2
√
ct:

ut(ct) = 2
√
ct, u′

t(ct) =
1

√
ct
, u′′

t (ct) = − 1

2c
3/2
t

−η =
u′′(ct)ct
u′(ct)

=
− 1

2c
3/2
t

ct

1√
ct

= −
1

2
√
ct

1√
ct

= −1

2

� Then η = 0.5, µ = 0.02 and ρ = 0.11, insert:

r = 0.11 + 0.5× 0.02 = 0.12 = 12%

� This rate of return on investments is higher when the discount factor is low,
because the agents are less patient and demand a higher return to be willing
to invest in the future.

question 3. Suppose there are two groups in the society. Half of the population are
patient and have δ = 0.99 (lecture), while the other half is applying dis-
count factor δ = 0.90 (exercise). Suppose you want to maximize the sum of
todays’ welfare (present discounted value). What is the max amount you,
as the planner, would be willing to invest/pay today if the value is worth
100 consumption units in 50 years? Which annual discount rate does this
correspond to?

– $1 at time t has the same amount as e−rt dollar today

– $100 at time t = 50 has the same amount as (100× e−rt) dollar today

– Group B: with δ = 0.9, gives r = 12%,

rB = 0.11 + 0.5× 0.02 = 0.12

$100 dollar at time t = 50 is

100× e−0.12×50 = 0.25$ today

– Group A: with δ = 0.99, gives r = 2%,

rA = 0.01 + 0.5× 0.02 = 0.02

$100 dollar at time t = 50 is

100× e−0.02×50 ≈ 37$ today
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– SP Include both groups

100×
(1
2
e−0.02∗50 +

1

2
e−0.12∗50

)
= 100

(
1/2e−1 + 1/2e−6

)
= 18.518 (2)

18.518 $ is the max willingness to pay for the social planner. This
corresponds to a discount rate: rSP = R

100e−R=×50 = 18.518

−R× 50 = ln
(18.518

100

)
−R× 50 = −1.6864

R = 0.0337 = 3.37%

– Group A is the most patient, expect more from the future, and has a
lower discount rate

– The lower discount rate, the less we discount the future, we care about
future return and take them into account, then the higher present value
has future cash flows

– Group B: The higher discount rate the lower present value of future
cash flows

– Social planners discount rate is closest to the most patient group

question 4. What is the answers to (question 3.) if instead the 100 consumption units
are materialized in 100 years, not 50 years?

– Group B: with δ = 0.9, gives r = 12%,

– with r = 12%, $100 dollar at time t = 100 is

100× e−0.12×100 = 0.0006$ ≈ 0 today (3)

– Group A: with δ = 0.99, gives r = 2%,

– with r = 2%, $100 dollar at time t = 100 is

100× e−0.02×100 ≈ 14$ today (4)

– Social Planner

100×
(1
2
e−0.02∗100 +

1

2
e−0.12∗100

)
= 100

(
1/2e−2 + 1/2e−12

)
≈ 7$ (5)
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– With a longer time horizon the discounted values almost diminishes,
especially for high discount rate, very impatient consumers

In the Time inconsistency exercise

If one can commit in period 0 to all future consumption levels, what is the
optimal ct for each period?

� With commitment the decision maker will maximize and decide the emission
level/consumption for all periods.

max
c0,c1,c2

c0 −
1

2
c20 + βδc1 − βδ

1

2
(c0 + c1)

2 + βδ2c2 − βδ2
1

2
(c0 + c1 + c2)

2

FOCc0 1− c0 − βδ(c0 + c1)− βδ2(c0 + c1 + c2) = 0

c0 =
1− βδ(1 + δ)c1 − βδ2c2

1 + βδ(1 + δ)
(6)

FOCc1 βδ − βδ(c0 + c1)− βδ2(c0 + c1 + c2) = 0

1− (c0 + c1)− δ(c0 + c1 + c2) = 0

c1 =
1

1 + δ
− c0 −

δ

1 + δ
c2 (7)

FOCc2 βδ2 − βδ2(c0 + c1 + c2) = 0

1− (c0 + c1 + c2) = 0

c2 = 1− c0 − c1 (8)

Insert (6) into (7)

c1 =
1

1 + δ
−
(1− βδ(1 + δ)c1 − βδ2c2

1 + βδ(1 + δ)

)
− δ

1 + δ
c2

c1(c2) = βδ − δ

(1 + δ)
− δ

(1 + δ)
c2 (9)

Insert (6) into (8)

c2 = 1−
(1− βδ(1 + δ)c1 − βδ2c2

1 + βδ(1 + δ)

)
− c1

c2(c1) =
βδ(1 + δ)

1 + βδ
− 1

1 + βδ
c1 (10)
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Combine (9) and (10)

c2 =
βδ(1 + δ)

1 + βδ
− 1

1 + βδ

(
βδ − δ

(1 + δ)
− δ

(1 + δ)
c2

)
Solve the system:

ccommit
2 = δ (11)

ccommit
1 = δ(β − 1) (12)

ccommit
0 = 1− βδ (13)

� If one cannot commit in period 0, what is the equilibrium values of ct for
each period?

max
c2

u2 = c2 −
1

2
(c0 + c1 + c2)

2

Solve by backward induction, Consumption ct becomes a function of previous
consumption, and that needs to be taken into account

FOCc2 1− (c0 + c1 + c2) = 0

Make a function c2(c0, c1)

c2(c0, c1) = 1− c0 − c1

and insert into Utility

max
c1

u1 = c1 −
1

2
(c0 + c1)

2 + βδ2c2 − βδ2
1

2
(c0 + c1 + c2)

2

max
c1

u1 = c1 −
1

2
(c0 + c1)

2 + βδ(1− c0 − c1)− βδ
1

2
(c0 + c1 + 1− c0 − c1)

2

Maximize wrt the previous period, c1

FOCc1 1− (c0 + c1)− βδ = 0

1− (c0 + c1)− βδ = 0

Make a function c1(c0)
c1(c0) = 1− c0 − βδ

and insert into U

max
c0

u0 = c0 −
1

2
c20 + βδ(1− c0 − βδ)− βδ

1

2

(
c0 + (1− c0 − βδ)

)2
+βδ2

(
1− c0 − (1− c0 − βδ)

)
− βδ2

1

2
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Maximize wrt c0
FOCc0 1− c0 − βδ = 0

Solve the system:
cnon−c
0 = 1− βδ (14)

cnon−c
1 = 0 (15)

cnon−c
2 = βδ (16)

Compare
ccommit
1 < cnon−c

1

δ(β − 1) < 0 since 0 < β < 1

you should compare:

cnon−c
1 to ccommit

1

cnon−c
2 to ccommit

2

to get some interesting interpretation. We see that the social planner would prefer
a smaller c1 when he plan and commit ahead.

Seminar 6.

Ex. 1, Supply-side policies Total emissions: e = EM(xM) + EN(xN) =
EM

(
xM

)
+ EN

(
S(p(xM , yM)

)
(Instead of writing SM(p) as I did on the board

in the seminar, we just keep xM)

� The utility of the coalition:

UM = B(yM)−C(xM)−p(xM , yM)(yM−xM)−H
(
EM

(
xM

)
+EN

(
SN(p(xM , yM))

))
� Derive the coalitions optimal tax on consumption yM :

∂UM

∂yM
= B′ − p− dp

dyM
(yM − xM)−H ′

(
E ′

N(xN)S
′
N(p)

dp

dyM

)
= 0

Rearrange:

B′ − p =
dp

dyM
(yM − xM) +H ′E ′

N(xN)S
′
N(p)

dp

dyM
≡ ty

where dp
dyM

= 1
S′
N (p)−D′

N (p)
, which gives:

ty =
(yM − xM)

S ′
N(p)−D′

N(p)
+

S ′
N(p)

S ′
N(p)−D′

N(p)
H ′E ′

N(xN)
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� Derive the coalitions optimal tax on production xM :

∂UM

∂xM

= −C ′+ p− dp

dxM

(yM −xM)−H ′
(
E ′

M(xM)+E ′
N(xN)S

′
N(p)

dp

dxM

)
= 0

Rearrange:

p− C ′ =
dp

dxM

(yM − xM) +H ′
(
E ′

M(xM) + E ′
N(xN)S

′
N(p)

dp

dxM

)
≡ tx

where dp
dxM

= − 1
S′
N (p)−D′

N (p)
, which gives:

tx = − (yM − xM)

S ′
N(p)−D′

N(p)
+H ′

(
E ′

M(xM)− S ′
N(p)

S ′
N(p)−D′

N(p)
E ′

N(xN)
)

Assumption 1. Assume the coalition M is net exporter, thenyM < xM

The we see that tx should be higher thus higher is the emission content in
the coalition’s supply, (tx is increasing in E ′

M)

Key interpretation: If a net exporter is supplying dirty fuels to
the market, supply side policies should be stricter than the de-
mand side policies. We want to prevent the dirty fuels from being
produced and supplied to the market.

� Consider an emission tax that is proportional to the quantity produced:
tx = teE ′

M(xM), then te is given by:

te = − yM − xM

S ′
N(p)−D′

N(p)

1

E ′
M(xM)

+H ′ − S ′
N(p)

S ′
N(p)−D′

N(p)

E ′
N(xN)

E ′
M(xM)

H ′

If the free riders have higher emission content, (E ′
N > E ′

M) then the tax te

should be smaller, we want to replace the dirty fuels from N with fuels from
M , no matter whether M is a net importer or exporter.

Self-enforcing contracts

The compliance constraint:

1

(1− δ)

[
ln(b+ gFB + r)− cNgFB

]
︸ ︷︷ ︸

Everyone play FB

≥ ln(b+ gBaU + r)− cgBaU − c(N − 1)gFB︸ ︷︷ ︸
one country diviates

+
δ

(1− δ)

[
ln(b+ gBaU + r)− cNgBaU

]
︸ ︷︷ ︸

cooperation is destroyed forever after
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Where B(gFB) = ln(b + gFB + r) and B(gBaU) = ln(b + gBaU + r), and we then
rearrange such that it is easier to interpret the condition:

B(gFB)−B(gBaU) ≥ c
(
1 + δ(N − 1)

)
(gFB − gBaU)

Assumption 2. δ ∈ (0, 1) and N > 1

We see that this condition holds if δ is high, c is high or N is high.

Consider now the scenario where where countries differ

(4) What is the non-cooperative equilibrium?

max
gi

ui = ln(b+ gi + ri)− ci

n∑
i=1

gi

dui

dgi
:

1

b+ gi + ri
− ci = 0

gBaU
i = 1/ci − b− ri

(5) What is the first-best equilibrium?

max
gi

ui = ln(b+ gi + ri)−
n∑

j=1

cj

n∑
i=1

gi

dui

dgi
:

1

b+ gi + ri
−

n∑
j=1

cj = 0

gFBi =
1∑n
j=1 ci

− b− ri

(6) State the compliance constraint.

Solution: The compliance constraint for the countries: 1, 2, ..., i, j, s, ..., N be-
comes:

1

(1− δ)

[
ln(b+ gFB + r)− ci

N∑
s=1

gFB
s

]
≥ ln(b+ gBaU + r)− cig

BaU
i − ci

N−1∑
j∈N\i

gFB
j

+
δ

(1− δ)

[
ln(b+ gBaU + r)− ci

N∑
s=1

gBaU
s

]
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separate all gFB
i and gBaU

i from the sums
∑N

s=1

1

(1− δ)

[
ln(b+ gFB + r)− cig

FB
i − ci

N−1∑
j∈N\i

gFB
j

]
≥ ln(b+ gBaU + r)− cig

BaU
i − ci

N−1∑
j∈N\i

gFB
j

+
δ

(1− δ)

[
ln(b+ gBaU + r)− cig

BaU
i − ci

N−1∑
j∈N\i

gBaU
j

]
rearrange, such that we can combine 1

(1−δ)
ci
∑N−1

j∈N\i g
FB
j and ci

∑N−1
j∈N\i g

FB
j :

ln(1− δ)
[
ln(b+ gFB + r)− cig

FB
i

]
≥ ln(b+ gBaU + r)− cig

BaU
i

+
δ

(1− δ)

[
ln(b+ gBaU + r)− cig

BaU
i

]
+

δ

(1− δ)

[
ci

N−1∑
j∈N\i

gFB
j − ci

N−1∑
j∈N\i

gBaU
j

]
1

(1− δ)

[
ln(b+ gFB + r)− cig

FB
i

]
≥ 1

(1− δ)

[
ln(b+ gBaU + r)− cig

BaU
i

]
+

δ

(1− δ)

[
ci

N−1∑
j∈N\i

gFB
j − ci

N−1∑
j∈N\i

gBaU
j

]
if δ ∈ (0, 1)

ln(b+ gFB + r)− cig
FB
i − δci

N−1∑
j∈N\i

gFB
j ≥ ln(b+ gBaU + r)− cig

BaU
i − δci

N−1∑
j∈N\i

gBaU
j

ln(b+ gFB + r)− ln(b+ gBaU + r) ≥ ci(g
FB
i − gBaU

i ) + δci(
N−1∑
j∈N\i

gFB
j −

N−1∑
j∈N\i

gBaU
j )

� What if we force the gFB to be equal to zero? Then the compliance constraint
becomes:

Insert gFB = 0:

1

(1− δ)
ln(b+r) ≥ ln(b+gBaU+r)−cgBaU+

δ

(1− δ)

[
ln(b+gBaU+r)−cNgBaU

]
Insert for gBaU

i = 1/c− b− r

ln(b+ r) ≥ (1− δ) ln(1/c)− (1− δ)c(1/c− b− r) + δ
[
ln(1/c)− cN(1/c− b− r)

]
ln(b+ r) ≥ ln(1/c)− (1− δ)c(1/c− b− r)− δcN(1/c− b− r)

ln
(
c(b+ r)

)
≥

(
c(b+ r)− 1

)(
(1− δ) + δN

)
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We see that it is important to increase the investment level r when c is low,
δ is low and N is low, because then it is hard to sustain cooperation.

� We now endogenize the technology levels by letting the countries simultane-
ously, non-cooperatively decide on their ri’s at the investment stage, which
is prior to the emission stage. (We are still assuming that gFB = 0). The
CC gives us the level of g:

1

(1− δ)
ln(b+ r) ≥ ln(b+ g + r)− cg +

δ

(1− δ)

[
ln(b+ g + r)− cNg

]
The level of r is given by:

r∗i (g) = argmax
ri

{ln(b+ gi + ri)− c
N∑
i=1

gi − kri}

FOC:
1

b+ r∗i + gi
− k = 0 (17)

Insert for g = 1/k − b− r from (17) into CC:

1

(1− δ)
ln(b+r) ≥ ln(1/k+r−r∗)−c(1/k−b−r∗)+

δ

(1− δ)

[
ln(1/k−r∗+r)−cN(1/k−b−r∗)

]
ln
(
k(b+ r)

)
≥ −

(
1 + δ(N − 1)

)
c(1/k − b− r)
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