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Environmental Problems

Overusing/exploiting renewable and exhaustible resources

Land use changes (e.g. tropical deforestation)

Waste (e.g. hazardous, or plastic)

Water (over-usage, or contamination)

Air (particles, NOx , acid rain; ozone layer)

Greenhouse gases (e.g., CO2)
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Classifications

National vs. international

Political vs. marked-based

Number of sources and number of affected parties

Tangible vs. nonverifiable pollutants

Affecting producers vs consumers

Flow pollutants vs. accumulated stocks

Contemporary vs. long-term effects
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Outline

1 Welfare theorems and market failures (micro)
2 Policy instruments (Pigou, Coase, Weitzman) (public ec.)
3 Trade and the environment (int. trade)
4 Self-enforcing vs. binding agreements (game theory)
5 Architectures for agreements (economic systems)
6 Free-riding and participation (contract theory)
7 Supply-side environmental policy (resource ec.)
8 Deforestation and REDD contracts (development ec.)
9 The value of the Future: Discounting (behavioral ec.)
10 Integrated Assessment Models (Traeger) (macro)
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Consumption and Production: "ECON 101"

Consumers i’s utility and good j’s production function:

ui
(
x i1, ..., x

i
J

)
and ∑

i
x ij ≤ f j

(
y1j , ..., y

K
j

)
,

...where i ∈ {1, ..., I} consumes x ij of good j ∈ {1, ..., J}, and y kj is
the quantity of input k ∈ {1, ...,K} used in the production of good j .
Pareto optimality (PO) requires that

max
{x ij },{y kj }

u1
(
x11 , ..., x

1
J

)
s.t.

ui
(
x i1, ..., x

i
J

)
≥ ui , ∀i (shadow value: λi ),

∑
i
x ij ≤ f j

(
y1j , ..., y

K
j

)
∀j (shadow value: µj ),

∑
j
y kj ≤ y k ∀k (shadow value: ηk ).

for some default levels (ui’s) and input quantities (y k’s).
Do we need to include labor/leisure in the model?
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Consumption and Production: Pareto Optimality

Lagrange (/Kuhn-Tucker) problem with foc for x ij and y
k
j (if λ1 ≡ 1):

λiuij = µj ,

µj f
j
k = ηk .

The shadow values depend on the default levels; the ui’s.
For PO, it is suffi cient that the foc’s hold for some shadow values.
When the foc’s are combined:

uij
uij ′

=
µj
µj ′
=
ui
′
k

ui ′l
∀
(
i , i ′
)
,
(
j , j ′
)

(effi ciency in consumption),

f jk
f jk ′

=
ηk
ηk ′

=
f j
′

k

f j
′

k ′
∀
(
k, k ′

)
,
(
j , j ′
)
(effi ciency in production),

uij
uij ′

=
f j
′

k

f jk
∀
(
j , j ′
)
, i , k (effi ciency in exchange).
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Consumption and Production: Market Equilibrium

Consumers’choice, given endowment E i (with shadow-value νi ):

max
{x ij }j

ui
(
x i1, ..., x

i
J

)
s.t. ∑

j
pjx ij ≤ E i (νi ) ⇒ uij = νipj .

Producers:

max pj f j
(
y1j , ..., y

K
j

)
−∑

k

w ky kj ⇒ pj f
j
k = w

k .

Combined:

uij
uij ′

=
µj
µj ′
=
ui
′
j

ui ′j ′
if just µj = pj ,

f jk
f jk ′

=
ηk
ηk ′

=
f j
′

k

f j
′

k ′
if just ηk = w

k ,

uij
uij ′

=
f j
′

k

f jk
=
pj
pj ′
∀
(
j , j ′
)
, i , k.
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Consumption and Production: Welfare Theorems

Theorem
1 Every market equilibrium ⇒ Pareto optimal.
2 Every Pareto optimal outcome ⇒ market equilibrium —given some
allocation of endowments.

Where is the environment?
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Consumption and Production: With Externalities

Externalities from inputs/productions to consumers:

ui
(
x i1, ..., x

i
J ,∑

j
gj

)
and ∑

i
x ij ≤ f j

(
y1j , ..., y

K
j , gj

)
.

Pareto Optimality is given by the same conditions as above, plus:

µj f
j
g = ∑

i
λi
(
−uig

)
⇒ u1j f

j
g = ∑

i
u1j
−uig
uij
⇒ f jg = ∑

i

−uig
uij
.

Equilibrium with no regulation: j emits until f jg = 0.
With regulation or tax t jg on j’s emission: pj f

j
g = t

j
g

This coincides with the PO outcome if

f jg =
t jg
pj
= ∑

i

−uig
uij

= ∑
i

−uig
pjui1/p1

⇒ t jg = ∑
i

−uig
ui1

p1.

So, the emission tax should be the same for all firms, no matter
how valuable/dirty they are.
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Consumption and Production: With Externalities (cont.)

If good 1 is a numeraire good (i.e., if ui1 = 1 = p1), then t
j
g = ∑i u

i
g .

Alternatively, the regulator may decide on the gj’s directly.

For each such policy, there will be equilibrium prices and quantities
such that payoffs are functions ui (g) and profits πj (g).
Larger gj’s is likely to benefit producer j (Bj (gj )) but be costly for
consumers (Ci (gj )).
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Externalities and Public Goods

Let gi be emission by agent i ∈ N ≡ {1, ..., n}, and g = {g1, ..., gn}.
Externalities:

ui (g) , if ∂ui/∂gj 6= 0 for some j 6= i .
Public good/bad:

ui (g) = ui (gi ,G ) = Bi (gi )− Ci (G ) , where G = ∑
j∈N

gj .

To get a unique solution, assume ui is concave in gi
For example: Every Bi is concave while Ci is convex.

Business as usual (interior) equilibrium:

B ′i (gi ) = C
′
i (G ) .

Suppose transfers enter linearly and additively in ui .
The first-best (FB; the unique PO outcome with transfers):

B ′i (g
∗
i ) = ∑

j∈N
C ′j (G

∗) .
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Pigou Taxes (The "Incorrect Prices" Approach)

Suppose i pays tigi and receives Ti (g).
Then, in equilibrium:

∂Bi (gi )
∂gi

= C ′i (G ) + ti −
∂Ti (g)

∂gi
.

Equivalent: A subsidy Ti (g)− tigi , f.ex. ti · (g i − gi ).
This coincides with the first-best if e.g.:

ti = ∑
j∈N\i

C ′j (G ) and
∂Ti (g)

∂gi
= 0.

In principle, it is (almost) irrelevant how tax revenues are spent.
For example: Ti (g) = ∑j∈N\i tjgj/ (n− 1).

If C ′i ≈ 0 for each emitter, the linear tax is the same for all:
t = ∑

j∈N
C ′j (G

∗)⇒ B ′i (gi ) = ∑
j∈N

C ′j (G
∗) .
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Pigou Taxes - Uncertainty

Facing the same tax, we get:

B ′i (gi , εi ) = t = B
′
j (gj , εj ) ∀ (i , j) ∈ N2

even if individual shocks (εi ) are private information.

Then, define ε = (ε1, ..., εn) and

B (t, ε) ≡ ∑
i∈N

Bi
(
B ′−1i (t, εi ) , εi

)
.

The optimal tax is given by:

max
t
E

[
B (t, ε)− C

(
∑
i∈N

B ′−1i (t, εi )

)]
.
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Pigou Taxes - Uncertainty - Example Q

Consider the quadratic approximation (Y=exp. "bliss" point):

B (G , ε) = −b
2
(Y − G − ε)2 and C (G ) =

c
2
G 2,

where the aggregate shock is ε ∈ R, Eε = 0, and variance Eε2 = σ2ε .
The equilibrium, given t:

max
G
−b
2
(Y − G − ε)2 − tG ⇒ b (Y − G − ε) = t.

The tax pins down B ′ and B, leaving the uncertainty to G and C (G ).
The optimal t:

max
t
− t

2

2b
− Ec

2
(Y − ε− t/b)2 ⇒ t∗ = c (Y − t∗/b) = cbY

b+ c
.

The uncertainty does not influence the optimal level of t. (Why?)
Welfare loss relative to no uncertainty increases in c :

Lε
t =

cσ2ε
2
.
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Pigou Taxes and Tax Revenues

Tax revenues (at the above optimal t∗):

EtG = E
cbY
b+ c

(
Y − ε− cY

b+ c

)
=
cb2Y 2

b+ c
.

Tax revenues (at general t):

t (Y − ε− t/b)

Normally, revenues necessitate distortionary taxes.
With the social value λ, the optimal t is thus:

max
t
− t

2

2b
− Ec

2
(Y − ε− t/b)2 + Eλt (Y − ε− t/b)⇒

t = c (Y − t/b) + λb (Y − 2t/b) = cb+ λb2

b+ c + 2λb
Y .

which can be increasing or decreasing in λ...
RQ: (When) is there a "double dividend"?
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Pigou Taxes and ’Double Dividend’

Proposition
1 Weak form: The regulation with Pigou tax revenues raises social
effi ciency relatively to regulation without tax revenues.

Holds trivially

2 Strong form: The optimal tax is larger than the Pigovian level.

The strong form may or may not hold.
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Coase (The "Property Rights" Approach)

Suppose disagreement leads to the "default" payoffs uDi . For
example, uDi may equal ui

(
gBAU

)
.

To negotiate a better outcome, a "proposer", i , would prefer to:

max
g,t
ui = Bi (gi )− Ci (G )− ti s.t.

uj = Bj (gj )− Cj (G )− tj ≥ uDj (IRj ).
With budget balance, ti = −∑j∈N\i tj , so i prefers the largest tj’s
satisfying IRj .
IRj can be substituted into ui , so that i maximizes:

max
g,t
ui = Bi (gi )− Ci (G ) + ∑

j∈N\i

[
Bj (gj )− Cj (G )− uDj

]
= ∑

j∈N
[Bj (gj )− Cj (G )]− ∑

j∈N\i
uDj = ∑

j∈N
uj (g∗)− ∑

j∈N\i
uDj .

In other words: i maximizes the sum of payoffs (minus a constant).
Consequently, the proposed gj’s coincides with the first best.

Harstad (University of Oslo) Lecture Notes 1 January 14, 2019 17 / 24



Coase Theorem (1960)

Theorem
The parties negotiate the effi cient outcome, regardless of the initial
allocation of property rights (i.e., the default outcome, uDj ) as long as
there are no ’transaction costs.’

For example, uDj may reflect BAU (i.e., everyone has the "right" to
emit as much as they want), or uDj could be uj (0), i.e., no-one has
the right to emit anything.
"Transaction costs" (tci ) must be suffi ciently small:

tci ≤ ∑
j∈N

[
uj (g∗)− uDj

]
.

What is this "transaction cost"?
To ensure an effi cient outcome, the bargaining power should be given
the party who faces the smallest transaction costs (i.e., the party who
can easily contact others or who has most information) (RQ: Why?)
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Trading Pollution Permits ("Missing Market")

If i has the right to emit Q0i , while j has the right to emit Q
0
j , the

two might benefit from trading without increasing total emission:

gi + gj ≤ Q0i +Q0j .
That is, if i emits gi and sell Q0i − gi , j can emit gj from buying
gj −Q0j = Q0i − gi from i .
This trade is beneficial as long as B ′i < B

′
j .

With effi cient trade, B ′i = B
′
j .

More generally, a proposer i prefers to:

max
g,t
ui = Bi (gi )− Ci (G )− ti s.t.

uj = Bj (gj )− Cj (G )− tj ≥ uDj (IRj ) and

∑
j∈N

gj ≤ ∑
j∈N

Q0j and ∑
j∈N

tj ≥ 0.

Consequently, B ′i = B
′
j for all pairs (i , j)

...regardless of the endowments.
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Perfect Pollution Markets ("Missing Market")

If n→ ∞, every i is likely to take the permit price p as given.
If i owns Q0i permits already, i solves

max
gi
Bi (gi )− Ci (G )− p

(
gi −Q0i

)
⇒ B ′i (gi ) = p,

since G = ∑j∈N Q
0
j is independent of gi .

The outcome is FB if:

p = ∑
j∈N

C ′j (G
∗) .

I.e., the outcome is FB if the quantity (and thus the price) is "right",
i.e., if:

Bi (gi ) = p = ∑
j∈N

C ′j (G
∗) .
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Perfect Pollution Markets ("Missing Market")

Proposition
When each emitter is a price-taker, the permit market equilibrium is
effi cient, regardless of the initial allocation of rights.

RQ: Why is the initial allocation (Q0i ) is irrelevant?
RQ: Is that useful for the regulator? How will the regulator decide on
the initial endowments? Must Q0i be exogenous?
What if Q0i depends on past production or past emissions?
So, permit trade => FB whether n = 2 or n = ∞.

Should we expect FB also if n ∈ (2,∞)? Why/why not?
With heterogeneous pollutants (i.e., G = ∑j∈N hjgj , the FB requires:

B ′i (gi ) = pqi = ∑
j∈N

hiC ′j (G
∗) , so

qi
qj
=
hi
hj
∀ (i , j) ∈ N2.
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Perfect Pollution Markets - Uncertainty

Private information: Conditions above (when n = ∞) hold if
Bi = Bi (gi , εi ) and εi is i’s private information.
Total benefit in equilibrium is:

B (G , ε) = max
g ∑

j∈N
Bj (gj , εj ) s.t. ∑

j∈N
gj = G .

The optimal cap is

max
G
EB (G , ε)− C (G )⇒ EB ′ (G , ε) = C ′ (G ) .

Example Q (with a single aggregate shock ε ∈ R):

Eb (Y − G + ε) = cG ⇒ G ∗ =
b

c + b
Y .

The shock does not affect G , but only B ′.
Relative to no uncertainty, the welfare loss is:

Lε
G =

bσ2ε
2
.
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Prices vs. Quantities (Weitzman ’74)

Proposition
The effi ciency loss under quotas is smaller than under prices/taxes,
Lε
G < L

ε
t , IFF b < c.

This holds generally when B and C are approximated by quadratic
functions, no matter the distribution of errors, and even if there are
(additive) shocks in the C function (RQ: Why?)
Rather than comparing welfare to the situation without uncertainty,
we can compare to the first-best outcome with the shock. (RQ:
Why?)
RQ: Without shocks in B (.), the shock in C (.) is irrelevant for the
comparison, and then the slopes are also irrelevant. (Why?)
RQ: How can the losses be reduced further?
By hybrid schemes?
Floor/ceiling for price?
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Prices vs. Quantities: Revenues

Pigou taxes raises revenues, which has an additional benefit.

The willingness to pay for a quota is B ′, so the revenues when
auctioning the initial quota endowments are:

b
c + b

Yb
(
Y − b

c + b
Y + ε

)
=
b2Y
c + b

(
c

c + b
Y + ε

)
.

This has the same mean as the expected Pigou tax revenues.

The variance of the auction revenues is smaller IFF b < c .

This adds to the benefits of quotas, rather than taxes, IFF b < c .
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