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Jon Vislie; July 2016 

On Intertemporal Optimization and Dynamic Efficiency: 
 From discrete to continuous time (the maximum principle)1 

This note might, hopefully, be some help in understanding some  of the (“mysterious”) 
conditions you see when solving a dynamic optimization problem, using Pontryagin’s 
Maximum Principle (“control theory”). Before launching a discrete time version of the 
well-known Ramsey model which we turn into a continuous time framework, by taking 
limits, let us consider a simple three-period model, with capital equipment and some 
non-renewable resource, both used as inputs to generate a macro output to be used for 
consumption and gross investment. This set-up will introduce some important concepts 
and relevant rates of interest or rates of return we will use. 

1. On dynamic efficiency and optimality 
We have a three-period economy, with an initial stock of capital equipment,

0
K , and an 

initial stock of a non-renewable natural resource, 
0

S . An output per period is produced 

by using the services of capital equipment along with resources (as a flow). In the first 
period, output is 

0 1
( , )F K R , where F  is a standard neoclassical production function, 

obeying the Inada-conditions. This output is allocated to consumption in the first period, 

1
c , and gross investment 

1 1 0
(1 )J K Kd= - - , where a fraction (0,1)d Î  of the existing 

capital stock is depreciated per period. In addition, the remaining stock of the non-
renewable resource at the end of the first period is given by 

1 0 1
S S R= - . Consumption 

per period is evaluated according to a one-period utility function, ( )U c , which is strictly 
increasing, bounded and strictly concave; with (0)U ¢ = ¥ . The utility function is time-

independent; the same in any period. (We assume, conventionally, that consumption is 
to take place at the beginning of any period.) Another assumption is that capital can 
without cost be transformed back to consumption (of course a rather special assumption, 
but it helps making the analysis simpler).  

To sum up: In the first period we have: 
0 1 1 1 0

( , ) (1 )F K R c K Kd= , - -  and 
1 0 1

S S R= - ; 

where consumption is evaluated according to 
1

( )U c .  

1 This note might be read along with “Optimal control theory with applications to resource and 
environmental economics”, by Michael Hoel.  
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In the second period we have:
1 2 2 2 1

( , ) (1 )F K R c K Kd= , - -  and 
2 1 2

S S R= - , with 

present discounted utility (i.e. the utility from consumption in the second period, 
evaluated from the beginning of the first period, is given by 

2
( )U cc , where b  is a 

constant one-period utility discount factor; with (0,1b ùÎ úû , capturing pure impatience. 

Finally, in the last period 3, we have:
2 3 3 3 2

( , ) (1 )F K R c K Kd= , - -  and 
3 2 3

S S R= - , 

with a present discounted utility as given by 2
3

( )U cc , as seen from the beginning of the 

first period. Because period 3 is the last one, we impose some terminal constraints on 
the stock variables 

3
K  and 

3
S . Because there is no future after this period, we impose 

the following end-point or terminal constraints
3 3

0, 0K S³ ³ . (Both constraints will in 

optimum be binding; welfare will be reduced if we don’t exploit all available resources 
for consumption before the end of the planning period.) 

If we insert for consumption in each period, along with the dynamics of the stock 
variables, we can express the present discounted utility, as a function of the state 
variables only, as:  

 

1 2 3 1 2 3 0 0 1 1 0 1 1 2 2 1
2

2 2 3 3 2

( , , , , , ) : ( ( , ) (1 ) ) ( ( , ) (1 ) )

( ( , ) (1 ) )

V K K K S S S U F K S S K K U F K S S K K

U F K S S K K

d b d

b d

= - - , - , - - , -

, - - , -

 

Because there is no uncertainty or risk, a social planner can put up a strict plan from the 
beginning of the first period, in the sense that all variables can be determined optimally 
at this stage. (There is no incentive to revise the plan at a later stage; hence we do not 
face any problem with dynamic inconsistency in the sense that at the beginning of any 
period, the planner will take the same decision as she did initially, if she were allowed 
to re-optimize.) 

The planner will now maximize her objective 
1 2 3 1 2 3

( , , , , , )V K K K S S S , subject to the 

terminal constraints 
3

0S ³  and 
3

0K ³ . Given our assumptions the problem has a 

solution. Wecan then define the Lagrangean function as 
3 3

L V S Kl m= ++  , where 

0l ³  and 0m ³  are multipliers (shadow prices) put on the terminal stock variables. 
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An intertemporal optimal allocation must then obey the following conditions, which, 
given concavity, are sufficient as well, for characterizing an optimum: 

1 2
1 1 1

(1 1) 0 ( )( 1) ( ) 1 0
L V F

U c U c
K K K

c d
é ù¶ ¶ ¶ê ú¢ ¢- = Û = - ++  - =ê ú¶ ¶ ¶ê úë û

  

for optimal values of the remaining variables. What is the interpretation of this first-
order condition? In this period we have to balance or trade off current consumption 
against investment; higher consumption will crowd out investment in the sense that 
less capital will be transferred to the next period. Hence we have to trade off current 
benefit from higher consumption against the loss of future benefit due to lower capital 
and thus lower capacity for producing consumption goods in the next period. For a 
given (optimal) value of 2K  and 1S , the benefit of higher capital equipment to be used 

in the next period (period 2), which is the present value of marginal utility of 
consumption in period 2, caused by the corresponding increase in output in period 2, 
should balance the marginal loss in current utility caused by lower consumption in 
period 1. On lowering consumption by one unit in period 1, at a utility cost 

1
( )U c¢ , 

while leaving one more unit of capital to be used in the next period, total increase in 
output being available for consumption in period 2 per unit consumption in period 1 is 

then 
1

1
F
K

d
¶

+ -
¶

; i.e., the unit itself (that explains the number “1”) plus the net 

marginal productivity of capital. The present value of the utility gain of this higher 

consumption in the next period is then 
2

1

( ) 1
F

U c
K

c d
é ù¶ê ú¢ + -ê ú¶ê úë û

. Then we get (1-1).  

In the next period, period 2, we have a similar trade-off, leading to the optimality 
condition:  

2
2 3

2 2

(2 1) ( )( 1) ( ) 1 0
V F

U c U c
K K

c c d
é ù¶ ¶ê ú¢ ¢- = - ++  - =ê ú¶ ¶ê úë û

 

This condition has the same interpretation as (1-1) above, for constant (and optimally 
adjusted) 1K  and 2S .  
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What about the use of natural resource in the first period? The answer to this question is 
related to how much of the resource stock we want to hand over as input in the 
subsequent period. That is; what is the optimal value of 

1
S ? This follows from: 

1 2
1 1 1 2

(1 2) 0 ( )( ) ( ) 0
L V F F

U c U c
S S R R

c
¶ ¶ ¶ ¶¢ ¢- = Û = - + =
¶ ¶ ¶ ¶

 

The interpretation of this condition is: Higher stock of resources at the beginning of the 
second period; 

1 0 1
S S R= - , is provided by reducing the input flow in the first period 

through a lower 
1

R , which, along with a constant stock of capital equipment, will give 

lower consumption in the first period. If we reduce 
1

R  by one unit (and hence increase 

the stock available at the beginning of the next period, 
1

S , by one unit), output will be 

reduced by 
1

F
R
¶
¶

 units of the consumption good, when capital equipment is kept fixed. 

The total marginal loss in the first period is then 
1

1

( )
F

U c
R
¶¢
¶

, which has to be balanced 

against the present value of discounted utility gain of higher consumption in the second 
period, realized by having a higher input flow of natural resources, for an optimally 

fixed value of 
2

S . The present value of this utility gain is 
2

2

( )
F

U c
R

c
¶¢
¶

. 

Along the same line, we can determine the optimal stock of the resources as being 
handed over to the last period. This has the same feature as (1-2) above, with a similar 
interpretation:  

2
2 3

2 2 3

(2 2) ( ) ( ) 0
V F F

U c U c
S R R

c c
¶ ¶ ¶¢ ¢- = - + =
¶ ¶ ¶

 

At last we have to determine the terminal values of the stocks to be left at the end of the 
last period. These are found respectively as 

2
3

3 3

(3 2) ( ) 0
L F

U c
S R

c l
¶ ¶¢- = - + =
¶ ¶

 and 
3

0Sl = , med 0l ³  ( 0=  if 
3

0S > )  

2
3

3

(3 1) ( ) 0
L

U c
K

c m
¶ ¢- = - + =
¶

 and 
3

0Km = , med 0m ³  ( 0=  if 
3

0K > )  
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Given our assumptions, we have l  and m  both positive; hence the constraints are 

effectively binding with no real capital and nothing of the natural resource handed over 
to the future. (The conditions (3-1) and (3-2) are later associated with so-called 
transversalilty conditions.)   

Therefore, for any period before the last one we must have: 

1
( ) ( ) ( ) 1 0

t t
t

F
I U c U c

K
c d+

é ù¶ê ú¢ ¢- ++  - =ê ú¶ê úë û
 for 1,2t =   

This condition says: The loss in utility caused by a unit reduction in consumption at the 
beginning of period t – or the current utility cost due to increased stock of capital 
available at the beginning of the subsequent period – is balanced against the present 
discounted increase in utility caused by having a higher supply of goods for 
consumption in period 1t + . (The higher supply is made up of the net marginal 

productivity 
t

F
K

d
¶

-
¶

 in addition to the capital unit itself, which can be consumed; 

hence the increased amount of output per unit capital equipment is 1
t

F
K

d
¶

+ -
¶

.) 

We can rewrite this expression as being read as equalizing the required rate of return 
from non-consumption (“saving”) and the real rate of return on capital: 

We know that the marginal rate of substitution (MRS) shows the maximal amount of 
consumption in period 1t +  that is required to compensate for one unit consumption in 

period t , without any loss in utility. This MRS is defined as 1

1

( )

( )
t t

t t

dc U c

dc U cc
+

+

¢
- =

¢
 , which 

by assumption is strictly declining: In order to be willing to give up consumption today 
for higher consumption tomorrow, one needs a higher future compensation the less we 
are consuming today. The MRS shows the number of units of consumption in period 
t+1 per unit consumption in period t. To get a relative rate or a rate of interest, we 

consider 1

1 1

( ) ( )( )
1 1

( ) ( )
t tt

t t

U c U cU c
MRS

U c U c

c

c c
+

++

¢ ¢¢ -
- = - =

¢ ¢
, which is a rate of interest, as 

defined as 
t
r , showing what rate of return you will require so as to be willing to give 

up consumption today without lowering utility. On using this definition in (I), we get: 
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1

1

( )
( ) 1 1 : :

( )
t t

t t
t t t

dc U c F
I

dc U c K
r d q

c
+

+

¢ ¶¢ - - = - = = - =
¢ ¶

  

where we have defined the real rate of return on capital or «the own rate of return”, 
denoted 

t
q  or the rate of interest per period in terms of the macro output. 

We then have our first important conclusion for how to allocate assets over time: Within 
the present context, optimal capital accumulation (and hence the associated 
consumption in each period) is determined so that in any period, the required rate of 
return on non-consumption (“saving”) should be equal to the real rate of return on 
capital (“investment”). 

Remark 1 
We can define an interest rate for any commodity being traded in different periods of 
time. Suppose we have a market economy with a full set of forward markets, by having 
prices, quoted at the outset of the first period, for a commodity no. i , as a sequence

{ }1 2
, ,....., ,..

i i it
p p p , showing what you have to pay at the outset of the first period for a 

unit of the commodity delivered in period t . These prices are called discounted or 
present value prices, and supposed to be quoted in some monetary unit. Given such a 
price structure, you will want to act according to the standard rule for utility 

maximization as a price taker, according to 
1 , 1

( )

( )
t ct

t c t

U c p

U c pc , ,

¢
=

¢
. Then we have an own 

rate of interest for this commodity over the period , 1t té ù,ê úë û , defined as: 
, 1

, 1

: 1c ct
t t

c t

p

p
x ,

,

= - . 

On giving up one unit of consumption at t, you save an amount of money 
ct

p , at the 

beginning of the first period. For delivery in the subsequent period, each monetary unit 

saved in period t, can purchase 
, 1

1

c t
p ,

 units of additional consumption to be delivered at 

the beginning of 1t + ; hence, you can totally acquire ,

, 1

c t

c t

p

p ,

 additional units of 

consumption to be delivered at the beginning of period t+1, which is equivalent to the 
MRS as shown above. The relative rate of return, as a percentage, from this kind of 
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intertemporal substitution, is 
, 1

, 1

: 1c ct
t t

c t

p

p
x ,

,

= - .  This is the own rate of interest on 

consumption between t and t+1. 

To take a step towards continuous time, let us consider the period between t  and t h+ , 
and define the own rate of interest on consumption in a period of time of length h , as 
the average rate of change in the price of consumption over this period, as given by 

, ,
,

,

c t c t h c
t t h

c t h

p p

hp
x,

,
,

-
= . Let 0h ¯ , and assume the limit exists. We then get ( )

( )
( )

c p t
t

p t
x = -

 , 

where ( )
( ) :

dp t
p t

dt
=  is the derivative with respect to time. The continuous own rate of 

interest per unit of time is equal the negative of the relative rate of change in the price of 
consumption. If the price of consumption is expected to decline, then the own rate of 
interest is positive as the instantaneous rate of return from giving up consumption at t 
is positive. On the other hand, if the price increases, then the own rate of interest is 
negative, as you will experience a loss from delaying consumption “from t to t h+ ” as 
seen at point in time t. 

* 
Because there are two assets in this economy, producible real capital equipment and a 
non-renewable natural resource, optimal wealth management must also include 
optimal holding of the resource as a stock, and the corresponding use of the resource 
per period (as a flow). Resource saving now means that we are not extracting all 
resources today, but instead leave some of it in the ground available for subsequent 
periods. What is being used in one period, is used up physically, and cannot be used 
again. That is the true character of a non-renewable resource. Current use will therefore 
have an opportunity cost reflecting the value of the resource used for future production. 
The value of current use or consumption (as given by the “rental value” or the price per 
unit extracted of the resource, in units of utility) has to balance the future return on the 
remaining reserve as an asset (saving), given by a capital gain. By delaying extraction or 
choosing not to extract one unit of the resource today, one might use this unit tomorrow 
to produce goods for consumption or for capital accumulation. We have seen that the 
trade-off with respect to the amount of the resource to be left over to the future, from 
which we can derive how much of the resource to be extracted per period (except the 
last one), is given by the condition 
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1
1

( ) ( )( ) ( ) 0
t t

t t

F F
II U c U c

R R
c +

+

¶ ¶¢ ¢- + =
¶ ¶

  for 1,2t =   

which has been interpreted earlier. However, this condition can be rewritten in the 
following two alternative ways: One is to express (II) as 

1
1

1

( )
( ) ( , )

( )
tt

t t
t

t

F
RU c

II MRS c c
U c F

R
c

,
,

,

¶
¢ ¶

¢ = =
¢ ¶

¶

  for 1,2t =   

where the RHS of (II)’ is a marginal rate of transformation between output in period 
1t +  and in period t , for the resource input. For optimal capital equipment, the 

number of consumption units required for period 1t +  for giving up one unit of 
consumption in period t  coincides with the same rate at the production side, showing 
the gain from saving an amount of resource required for producing one unit of output 
in period t to be used in the production process in period t+1. Or, we can transform (II) 
into an equality between the required rate of return from non-consumption and the real 
rate of return from resource saving or delaying extraction of the non-renewable natural 
resource.  

From (II)’ we get, when using the definition of the required rate of return from non-
consumption in period t, as defined in (I)’, we get: 

1

1

( )
( ) 1 :

( )
t tt

t t
t

t

F F
R RU c

II
U c F

R

r t
c

+

+

¶ ¶
-

¢ ¶ ¶
¢¢ - = = =

¢ ¶
¶

  

The rate of change in marginal productivity of the resource use between two 
subsequent periods, is the rate of return on the resource stock (in ground) considered as 
an asset; defined here as 

t
t . This is a rate of interest per period in units of consumption. 

(The marginal productivity of the resource can be seen as the price for the resource, in 
terms of the consumption good. Hence, the RHS shows the rate of change in the 
resource price, or a capital gain on the unextracted resource between the two periods.) 
We therefore have: 
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1

1

( )
( ) 1

( )
t tt

t t t
t t

t

F F
R RU cF

III
K U c F

R

q r t d
c

+

+

¶ ¶
-

¢ ¶ ¶¶
= = Û - = - =

¢¶ ¶
¶

 for t=1,2 

An intertemporal optimum or optimal wealth management is therefore characterized 
by equalizing the return on capital equipment (or own rate of return) and the rate of 
change in the marginal productivity of the natural resource (or capital gain), and both 
being equal to the required rate of return from non-consumption, all rates measured in 
units of consumption. 

Remark 2: 
The condition 

t t
q t=  for 1,2,3t = , will characterize an intertemporally efficient 

programme. Given the technologies, initial and (binding) terminal constraints on 
resources and capital, we then have an allocation such that it is not possible to increase 
consumption in some period without reducing it in some other period. (This is similar 
to static efficiency. The allocation is a point on the boundary of the consumption 
possibility set which is the collection of all efficient programmes.) On equalizing this 
efficiency condition with the required rate of return, we determine the optimal point on 
this boundary. Hence, on maximizing intertemporal utility among all efficient 
programmes, we get the dynamic optimum.  
 

Remark 3: 
When we go to continuous time, the “resource rent” or the rate of return from delaying 

extraction is given as 

( )
lnt

F
R

R

t

d
d F

dt
F dt
R

¶
¶

=
¶
¶

 which is the continuous counterpart to our 

discrete version above  1t t

t

F F
R R

F
R

+

¶ ¶
-

¶ ¶

¶
¶

.  
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2. Towards the Maximum Principle 
We consider the well-known Ramsey model for optimal saving (with only producible 
real capital) and start with discrete time, and let, for a moment, each period has a length 
of time equal to one unit of time (say; one year). We assume that output per period (per 
year) – a flow – is generated from a standard neoclassical production function (strictly 
increasing and concave, and with (0)F ¢  sufficiently high), depending only on the stock 

of capital present at the beginning of the period. We now ignore the presence of any 
other input; also natural resources. (Capital is reversible in the sense that it can without 
cost be transformed to consumption, if necessary.) The output in any period is used for 
consumption and gross investment. 

Consider period t, for which we have the following balancing condition: Output in 
period t is allocated to consumption and/or gross investment: 

1 1 1
(1) ( )

t t t t t t t
F K C J C K K Kd- - -= + = + - +    for 1,2,....t =  

Here output per year, 
1

( ) 1
t

F K - × , is used for consumption 
t

C  and gross investment 

1 1t t t t
J K K Kd- -= - + , given by the sum of net investment 

1
( )

t t
K K --  in period t, and 

depreciation of capital equipment during the period (a constant fraction (0,1)d Î of the 

stock of capital present at the outset of the period.) 

Let us now divide each period in n sub-periods of equal length h  units of time. (Think 
of the year as 12 months, each of length 30 days.) Then each sub-period in year t can be 
represented by a time interval, say two subsequent days in August in the year 2016, 

1
,

i i
t t

n n

é ù,ê ú, ,ê úë û
, for 0,1,...., 1t T= .  and for 0,1,..., 1i n= . .  

Let us then consider gross output per sub-period. With a capital equipment i
n

t
K

+
 we 

could have produced, with this capital equipment, over the whole year a gross output 
( ) 1i

n
t

F K
+

× , where the number «1» represents the length of a year.2 However, we want 

2 The multiplication by the number «one» shows the very important distinction between flows and stocks. 
Capital is a stock variable, given by the number of machines present at some point in time. Output per 
unit of time at some point in time is a flow variable; really an intensity, must be multiplied by the length 
of the time period over which the flow operates to get an output. It is the same as saying that if you drive 
a car at a speed 80 km per hour, you don’t get any distance without multiplying this speed with some 
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to have a measure of output per sub-period; say per day. This will then be given by the 
output per unit of time ( )i

n
t

F K
+

, the flow, multiplied by the length of the time period 

under consideration, as given by 1
: h

n
= . Hence output per sub-period is then 

( )i
n

t
F K h

+
× , which is used for consumption in the period 1i

t
n
+

+ , as given by 1i
n

t
C ++

, 

and gross investment as defined as 1 1i i i i
n nn n

t tt t
J K K K

n
d

++  ++ ++
= - + , when taking into 

account that the depreciation per sub-period is 1
n

 of the annual depreciation rate.  

Consumption during any sub-period is defined as a constant consumption intensity or 
flow, multiplied by the length of the time period. Let the consumption intensity per unit 
of time be ct  with consumption during a short interval tD , given by ct tD , with ct

being constant, by assumption. Then we have that consumption during the period 

1
,

i i
t t

n n

é ù,ê ú, ,ê úë û
can be defined as «the continuous sum of all flows, i

n
t

c
+

 during this 

time period”, given by the integral: 

1

1(2)

i
n

i i
nn

i
n

t

tt
t

C c d hct t

+

+

+

++
+

= =ò   

Suppose that the instantaneous utility produced by some consumption intensity ct , is 

( )U ct , which is increasing and strictly concave, with (0)U ¢ = ¥ . During a period of 

length h , the utility flow is then ( )U c ht . 

If the annual utility discount rate or utility time preference rate («the felicity rate») is 

100 %r  , the discount rate per sub-period is r
rh

n
= . Define then a discount factor for the 

new accounting period as 1
:

1 rh
b =

+
. 

measure of time itself; say one hour which gives you a distance of 80 km. I think this very important issue 
is under-communicated among current generations of students in economics. 
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We should then be able to formulate a meaningful optimization problem for a social 
planner whose objective is to choose a consumption path and a corresponding path of 
real capital equipment, so as to maximize the present discounted total utility from today 
on and to a fixed horizon (or a fixed number of future periods), where the objective 

function can be written as 
1

1
1

0

( )
nT

j
j

j

U c hc
-

+
+

=
å , for a total of nT  sub-periods, given that: 

1 1
(1) ( ) (1 )

j j j j
F K h c h K h Kd++

¢ ³ + - -  0,1,..., 1j nT= .  

(We drop ³ , and put equality sign instead, because we will never operate with a slack.) 

0
(3) K A£  (A  being a given initial capital equipment), 0, 0

j j
K c³ ³ ; 1,2,...,j nT= . 

Given our standard assumptions, this problem has an interior solution, expressed as 
vectors, ˆ ˆˆ( , , )c K l , with a set of non-negative numbers (present discounted values of the 

Lagrange multipliers), ( )1 2
: , ,...,

nT
l l l l= , with consumption flows and capital 

equipment in each period obeying the first-order conditions: 

1
1 1

1

ˆ(4) ( ) 0j
j j

j

L
U c h h

c
c l+

++
+

¶ ¢= - =
¶

  for 0,1,..., 1j nT= .   

1
ˆ(5) 1 ( ) 0

j j j
j

L
hF K h

K
l l d+

¶ é ù¢= - ++  - =ê úë û¶
 for 0,1,..., 1j nT= .   

ˆ(6) 0 ( 0 0)
nT nT

nT

L
if K

K
l

¶
= - £ = >

¶
 and 

0
K̂ A£  

0
( 0)A if l= >   

where the Lagrangian function is 

1 1
1

1 0 0 1 1
0 0

(7) ( , , ) ( ) (1 ) ( )
nT nT

j
j j j j i j j

j j

L c K U c h K A c h K h K hF Kl c l l d
- -

,
, , , ,

= =

é ùé ù= - - - , - - -ê ú ê úë û ë ûå å
 

If we drop the «hats» for the optimal solution, we observe that we can write the 
optimality conditions (with 0l >> , 0c >> , and 0K >  with 

0
K A=  and 0

nT
K = ) as:  

(4) ( ) 1,...,j
j j

U c j nTc l¢ ¢ = =   
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1
(5) 1 ( ) 0,1,..., 1

j j j
hF K h j nTl d l,

é ù¢ ¢, . = = .ê úë û   

1 1
(1) ( ) (1 ) 0,1,..., 1

j j j j
F K h c h K h K j nTd, ,

¢ = , ..  = .   

 

Consider then the continuous counterpart to (4)’ and (1)’ first, and start with (1)’.3 

On dividing through (1)’ by h, we get: ( 1)

( 1)
( )t i h t ih

t ih t i h t ih

K K
F K c K

h
d+++ 

++++  

-
= - - . 

Let 0h ¯ , and we get the continuous counterpart to our balancing condition: 

(1)¢¢   ( ) ( ( )) ( ) ( ) ( ( )) ( ) ( ) ( )K t F K t c t K t F K t c t K t K td d= - - Û = ++     

To get to the continuous counterpart to (4)’ we use the following definition of the 
natural logarithm to get that interest now compounds exponentially: 

0

1
lim lim

1

i
n

t

rt t ih
h n r

n

e b
+

- +
® ®¥

æ ö÷ç ÷ç= = ÷ç ÷÷ç +è ø
   

so that: 

(4) ( ( )) ( )rte U c t tl-¢¢ ¢ =   

The present discounted value of marginal utility of consumption, in units of utility 
(utils) – a short-term effect – is equal to the value of the shadow price or what it is 
sometimes called, the adjoint or costate variable ( )tl , which can be interpreted as the 

“future” or marginal long-run impact of the current decision, measured in utils. From 
(5)’, when using (4)’, we get the first interpretation: On giving up one unit of 
consumption in sub-period j, so as to increase the stock of capital with one unit at the 
beginning of the subsequent sub-period, the utility cost is 

j
l . This cost must be 

balanced, all other things being optimally adjusted, against the utility gain of the 
additional output for consumption that will be provided by the higher capital 
equipment in the future made possible through lowering consumption now. The 
amount of gross output being available for consumption is then 1 ( ( ) )

j
h F K d¢+ - . The 

3 We assume all limits exist. 
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utility evaluation of each marginal unit of subsequent consumption is 
1j

l +
; hence we get 

1
1 ( )

j j j
hF K hl d l+

é ù¢+ - =ê úë û . This condition can be expressed as 

( 1)

(i 1)
[ ( ) ] t ih t i h

t h t ih
F K

h

l l
l d +++ 

+++ 

-
¢ - =  , where 

( 1)t ih t i h
l l+++  -  is a measure of the loss in 

the value of capital, in units of utility, from period t ih+  to ( 1)t i h++  , or depreciation 
of capital. On letting 0h ¯ , we get the continuous version: 

( )
(5) ( ) ( ) ( ( )) ( ( ))

( )
t

t t F K t F K t
t

l
l l d d

l
é ù¢¢ ¢ ¢- = - Û - = -ê úë û



   

We have seen before that ( ( ))F K t d¢ -  is a real rate of return (an interest rate) on capital, 

and from Remark 1, we can identify the relative rate of decline in the shadow price also 
as a rate of interest. 

At last, by noting that the limit of the objective function can be written as an integral, 

because we have: 
*

1
1

0 1
0 0

lim ( ) ( ( ))
TnT

j rt
h j

j

U c h e U c t dtc
-

+ -
® +

=

=å ò , with *T  as the corresponding 

end-point of the planning period.  

The continuous counterpart to our previous dynamic optimization problem is then:  

 

Problem-continuous 

 
*

0

( ( ))
T

rtMaximize e U c t dt-ò   

 such that  ( ) ( ( )) ( )K t F K t K td= - , *(0) , ( ) 0K A K T= =   

with *( ) 0, ( ) 0 0,K t c t t Té ù³ ³ " Î ê úë û , 
*T  fixed    

First we suppose that the integral exists, so that our problem has a solution. Then the 
task is to choose a consumption path and an associated capital path, which has to 
evolve over time according to the differential equation above, so that the present 
discounted utility or the integral is maximized over the fixed planning period, given the 
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dynamics of the capital equipment, with some initial capital equipment and a given 
requirement on terminal capital. This is a problem of optimal control, with c  being the 
control variable, whereas K  is called a state variable. The utility discount rate r  in the 
objective function must here be regarded as a rate of pure time preference or a rate of 
impatience. 

We can try to formulate this problem first as a Lagrangian problem (but now we must 
be cautious as there are an infinite number of side constraints as given by the 
differential equation for the state variable). Define a Lagrangian function L, with 
corresponding Lagrangian multipliers, as given by: 

{ }
*

*

0

( ( )) ( ) ( ( )) ( ) ( ) ( ) (0) ( )
T

rtL e U c t t F K t c t K t K t dt K A K Tl e m K- é ù é ù= + - - - - - +ê ú ê úë û ë ûò    

{ }
* *

*

0 0

( ( )) ( ) ( ( )) ( ) ( ) ( ) ( ) (0) ( )
T T

rte U c t t F K t c t K t dt t K t dt K A K Tl e l m K- é ù é ù= + - - - - - +ê ú ê úë û ë ûò ò    

where ,m J  are non-negative multipliers imposed on the initial and terminal constraints 

on the capital stock, respectively. Before we look at the partial derivatives of the L-
function with respect to ,c K , as we do in standard static optimization problems with 

side-constraints, we want to «get rid» of the troublesome ( )K t . On integrating by parts 

we get: 

* * *
*

* *

0
0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (0) (0) ( ) ( )
T T T

T
t K t dt t K t t K t dt T K T K t K t dtl l l l l lé ù= - = - -ê úë ûò ò ò     

Using this, we can rewrite the Lagrangian as: 

(7)’ { }
*

0
* * *

( ( )) ( ) ( ) ( ) ( ( )) ( ) ( )

(0) ( ) ( ) ( ) (0) (0)

T
rtL e U c t t K t t F K t c t K t dt

K A K T T K T K

l l e

m K l l

- é ù= ++  - -ê úë û
é ù- - + - +ê úë û

ò 

  

(Note that the running calendar time only enters the integral part, whereas the 
remaining parts of the Lagrangian are related to initial and terminal constraints on the 
state variable.) 
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Now we can put up the partial derivatives (in an infinite number because time is 
continuous): 

(8) (0) 0 ( 0 (0) )
(0)
L

if K A
K

m l m
¶

= - + = = <
¶

  

* *

*
(9) ( ) 0 ( 0 ( ) 0)

( )

L
T if K T

K T
K l K

¶
= - = = >

¶
  

(10) ( ( )) ( ) 0rtL
e U c t t

c
l-¶ ¢= - =

¶
 for any *0,t Té ùÎ ê úë û   

(11) ( ) ( ) ( ( )) 0
L

t t F K t
K

l l d
¶ é ù¢= + - =ê úë û¶

   for any ( ))0,t TÎ   

Before we show how this solution can be derived from the so-called maximum principle, 
let us just restate some of the previous results, now in continuous time: If we return to 
our discrete version with, a period length equal to one, we had: 

(10)' ( ) ( ( )) ( )t rt
t t

U c e U c t tc l l-¢ ¢= ® =   

(11)' 1
1

1

( )
1 ( ) ( ) [ ] ( ( ))

( )
t t

t t t t
t

t
F K F K F K t

t

l l l
l d l d d

l l
+

+
+

-é ù¢ ¢ ¢+ - = Û = - ® - = -ê úë û


  

where the real rate of return on capital per unit of time is ( ( )) : ( )F K t td q¢ - = . The 

relative rate of decline in the present discounted shadow price, ( )
( )
t
t

l
l

-


 , which we have 

seen can be interpreted as a required rate of return on non-consumption, is equal the 
real net rate of return on capital, along an optimal path. This is also seen by 
differentiating (10) with respect to time, which yields a famous formula, first derived by 
Ramsey in 1928, when we define (the absolute value of) Frisch’s flexibility of marginal 

utility, as ˆ( ) ( ) 0
( )
c

c U c
U c

w ¢¢= - >
¢

:4 

4 Under certain assumptions it can be shown that the higher (smaller) is the absolute value of this Frisch 
flexibility, the less (better) are the intertemporal substitution possibilities; i.e., the more (less) curved are 
the indifference surfaces. 
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( ) ( ) ( )
(12) ( ) ( ( )) ( ) ( ) ˆ( ( )) : ( )

( ) ( ) ( )
rt c t t c t

r t e U c t c t t r c t t
c t t c t

l
l l w r

l
- ¢¢- + × × = Û - = + × =



 

   

The RHS of the last term in (12), which is also a measure of the social rate of discount, is 
the continuous counterpart to the required rate of return from non-consumption, being 
equal to the sum of the instantaneous utility discount rate (a subjective element) or the 
rate of pure impatience, r , and the product of the absolute value of the flexibility of the 
marginal utility of consumption and the growth rate in consumption. (Whereas the 
felicity rate captures pure impatience, the second one is related to how a change in 
consumption is evaluated over time; a high value of ŵ  indicates that the benefit of 
additional consumption is declining rapidly.) A high discount rate or a required rate of 
return per unit of time in units of the macro commodity, ( )tr , means that we are willing 

to sacrifice less today so as to get more consumption in the future. Along an optimal 
path the required rate of return is balanced against what can be obtained through 
giving up consumption today for capital accumulation, the social rate of return on 
investment. Along an optimal path we have: 

( ) ( )
(12)' ( ) : ˆ( ( )) ( ( ) : ( )

( ) ( )
c t t

t r c t F K t t
c t t

l
r w d r

l
¢= + × = - = - =





  

Optimality over time will require a balancing of non-consumption and investment 
which is “undertaken” by the rate of change in the shadow price so as to equalize r  

and q . (This common value will, under certain assumptions, be equal to the 
competitive rate of interest, in units of consumption.)   

Let us then see how this solution can be obtained from the Maximum Principle. We 
define what is called the present value Hamiltonian function, along similar lines as we 
did when introducing the Lagrangian: 

(13) ( , , , ) ( ) ( )rtH K c t e U c F K K cl l e- é ù= , - -ê úë û   

The Maximum principle tells us now that an optimal solution is found as choosing a 
control variable at each instant of time, here the consumption flow, which maximizes 
the Hamiltonian, when there exists an adjoint or costate variable ( )tl , that moves over 

time as in (11). 

Hence, our (interior) optimum is found as: 
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determined so that 

*

*

* *

( ) 0 0,

(14) ( ) ( ) 0,

( ) ( ) 0

rt
c

K

H e U c t T

t H F K t T

T K T

l

l l e

l

-ì é ùï ¢= - = " Îï ê úë ûïïï é ùé ù¢= - = - - " Îí ê ú ê úë û ë ûïïï =ïïî

    

with ( ) ( ( )) ( ) ( )K t F K t c t K td= - -  satisfied as well. These conditions, which are 

necessary, coincide with the ones we have derived above. 

Remark 4: 
We can have different types of end-point constraints on the state variable, depending on 
the problem. With a fixed horizon, we have required that *( ) 0K T = , meaning that we 

will eat up everything before the end of the planning period. Above, see (9), we found 
that *( ) 0Tl J= ³ , which says that the costate variable l  now is to be determined at 

the end of the planning period. This condition can then be expressed as * *( ) ( ) 0T K Tl = . 

Another terminal state constraint is to impose no condition on *( )K T ; we then say that 

the state variable at this point in time is free as we impose no constraint on how much 
capital we will end up with at *T . In that case we will have *( ) 0Tl = . We can also 

operate with an end-point of the planning period that itself is part of the problem 
(“when is it optimal to stop?”), or we can have an infinite horizon. The terminal 
conditions imposed on the state variables will therefore require different conditions on 
the associated costate variables at the end-point. These conditions are called 
transversality conditions which we come back to in the lectures. (Note that these 
conditions are rather trivial with a fixed horizon, but much more complicated with 
infinite horizon. If we let the horizon in our problem go to infinity, we have for the end-
point constraint lim ( ) 0

t
K t®¥ ³ , a set of transversality conditions being 

lim ( ) 0rt
t

e tm-
®¥ ³  and lim ( ) ( ) 0rt

t
e t K tm-

®¥ = , as a part of the solution. These 

conditions will rule out leaving valuable assets unused as T ® ¥ .5  

Remark 5: 

It can be shown that with an optimal solution as in (14), and given by { }
*

* *

0
( ), ( )

t T

t
c t K t

=

=
, 

with *(0) ,K A=  and * *( ) 0K T = , then we can define a value function, written as 

5 These conditions will imply the so-called “No Ponzi Game” condition known from macro, and will rule 
out speculations and bubbles. 
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*

*

0

(15) ( ) ( ( ))
T

rtV A e U c t dt-= ò   

It is easy to demonstrate that the increment in the maximal present value of discounted 
utility of a marginal increase in initial capital equipment, is given by the value of the 
shadow price or costate variable at 0t = ; i.e., (0)l ; hence we have: 

(16) ( ) (0)V A l¢ =       

(Or a bit more general, if we were given (exogenously and unexpectedly) more capital 
equipment at some point in time, t , it can be demonstrated that ( ) ( )V Kt l t¢ = . If we 

had imposed some more restrictive terminal capital requirement, say we want to 
transfer more capital for the period after T – whatever that means – from *( ) 0K T =  to 

*( )
T

K T K³ , then we have *( ) ( )
T

V K Tl¢ = - , which is the total welfare loss of leaving 

more capital to the future.) 

An example 
Suppose we now have a simple linear production function, a logarithmic utility 
function and no depreciation of capital equipment. Hence we have: 

( )F K bK= , ( ) lnU c c= , 0d =  and a fixed planning period 0,Té ùê úë û . 

The planning problem is then: 

 
0

ln ( )
T

rtMax e c t dt-ò   

 Subject to 
( ) ( ) ( ); (0) 0, ( ) 0K t bK t c t K k K T= - = > = ; with T  fixed 

 
(The model can also illustrate a pure consumption-wealth management problem of an 
individual, with K as wealth, and b  the market rate of interest. Or it can illustrate a 
simple model illustrating extraction of a non-renewable resource, with K as the 
remaining reserve of resource, when putting 0b = .) 
 
The present value Hamiltonian is ( , , , ) lnrtH K c t e c bK cl l- é ù= , -ê úë û , and according to 

our previous results, an optimal solution must obey: 
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 0 ( )
( )

rt rt

c

e e
H c t

c t
l

l

- -

= - = Þ =  

 ( ) ( ) (0) bt
K

t H b t el l l l -= - = - Þ =   

 ( )Tl , and hence, (0)l , is determined from (0) ,K k= and ( ) 0K T =   

 
Inserting for c  into the differential equation for the state variable, we get: 

 
( )

( ) ( )
(0)

b r te
K t bK t

l

-

- = -  , with the following solution: 

 ( )1
( )

(0)
bt b r tK t Be e

rl
-= +   

Now, because we have  (0)K k=  and ( ) 0K T = , we can determine the two constants 

B  and (0)l , from: 

 ( )1
( ) 0

(0)
bT b r TK T Be e

rl
-= = +    

 1 1
(0)

(0) (0)
K k B B k

r rl l
= = + Þ = -   

Inserting for B  in the end-point constraint, we get: 

 ( )1 1 1
( ) 0 (1 )

(0) (0) (0)
bT b r T bT rTK T e k e e k e

r r rl l l
- -

é ù é ù
ê ú ê ú= = - + = - -ê ú ê úë û ë û

   

from which we get:  

1
(0)

rTe
rk

l
--

=  

Then:  

1
( )

rT
bte

t e
rk

l
-

--
=  and ( ) ( )( ) : (0)

1
b r t b r t

rT

rk
c t e c e

e
- -

-
= =

-
. 

Finally, we get:  

( ) ( )1 1 1 1
( ) ( ) 1

(0) (0) (0) 1

rt
bt b r t bt b r t bt

rT

e
K t Be e k e e ke

r r r el l l

-
- -

-

é ù-ê ú= + = - + = -ê ú-ë û
 

Note that ( ) ( )
ˆ 1 ( )

( ) ( )
t c t

b r r b r
t c t

l
w

l
- = = + = + × -


 , as we now have a constant growth rate 

of consumption; c b r
c
= -
 , and as ( ) lnU c c= , 

21

1
ˆ ( ) ( ) 1

( )
c

C c
U c

U c c
w ¢¢= - = - - =

¢
. 

Thus all the time functions for the interesting variables are then determined. 
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Appendix – Dorfman’s  derivation of the maximum principle 
In a small note published in 1969, Robert Dorfman outlined the basic principles behind 
control theory, without entering into too heavy formalism.6 We will give a brief survey 
of his approach in this appendix. 
The decision unit under consideration; a firm, consumer or the a government, has, at 
any point in time, some instruments to be used so as to maximize the sum of future 
benefits, when the choice of the instruments will affect the future states or possibilities 
facing the decision unit. We can imagine a Ramsey economy, where the instantaneous 
flow utility is in general a function of the instrument or control variable x (say 
consumption, but might be a vector, as well), the state variable k  (say capital 
equipment used as input in a production function, might also be a vector) and time t  
(to capture, say, discounting); in the sense that utility during a short period of time dt  is 
given by ( , , )U k x t dt . The decision unit has preferences over the integral or “sum” of all 

such benefits over a long period of time, 0,Té ùê úë û , as given here by 

0
0

( , ) ( ( ), ( ), )
T

W k x U k t x t t dt= ò
 .  

(The notation x  means the sequence of future choices of instruments.) The “value” 
function 

0
( , )W k x

  is the total value today ( 0t =  ), if we start out with a capital stock 
0

k  

initially, and make decisions continuously from today until the end of the planning 

period, as given by the path { }
0

( )
t T

t
x x

=

=
= ×
  . 

In addition, there is a relationship between the choice made at some point in time and 
the change in the state variable per unit of time, along the same line as between 
consumption and capital accumulation above. Hence we impose the state equation 
showing the motion, dynamics or change per unit of time in the state variable as a 
function of the state variable itself, the choice (control) variable and time. Hence we 
impose the following constraints or state equations on a short interval of time, saying 
that the change in the state variable during this short time period, dk , is a function of 
the rate of change per unit of time ( , , )f k x t , an intensity, multiplied by the length of the 

time period; cf. footnote 1 above: 

6 See R.Dorfman (1969), An Economic Interpretation of Optimal Control Theory, American Economic 
Review 59 (5), pp. 817 – 831, with some corrections provided in American Economic Review, 60 (3), p.524. 
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( )
(1) ( ( ), ( ), ) ( ) ( ( ), ( ), )

dk t
dk f k t x t t dt k t f k t x t t

dt
= Þ = =   

The instantaneous choice of an instrument will have two effects: One is the direct effect 
on the current benefit, as given by ( , , )U k x t dt , and another one related to the rate of 

change in the state variable in (1) and hence future possibilities or options.  
The problem as we have seen it above is now to choose a decision path x so as to 
maximize the value of W , when taking into account the impact of current decisions on 
the rate of change in the state variable, and hence the future value of the state variable. 
This procedure can be followed from any arbitrary point in time, with some given 
initial state, as given, say at t, by 

t
k . On following, from t and onwards, the choice of 

instruments, x , so far quite arbitrary (but feasible; i.e. within the set of admissible 

controls), the value of the objective is: ( , ) ( ( ), ( ), )
T

t
t

W k x U k x dq q q q= ò
 . 

Then we make the following trick, by breaking up this value in two parts; one of a very, 

very short interval of time ,t té ù, Dê úë û , on which the decision taken is (the flow) 
t

x  , along 

with a state variable 
t

k , and another one related to the value W  on the interval 

,t Té ù, Dê úë û , with an initial state 
t

k +D
. Hence we can now write: 

,
(2) ( , , ) ( , , ) ( ( ), , ) ( , , ) ( , , )

T

t t t t t t
t

W k x t U k x t U k x d U k x t W k x tq q q ,D
,D

= D, = D, ,Dò
     

These “value” functions are related to an arbitrary decision path. If the decision maker 
now can put up the best choice of the instruments from t and onwards, we can define a 
true value function as: ( , ) ( , , )

t x t
V k t Max W x t= 

  

Suppose now we follow some policy, 
t

x , not necessarily the best, for a short period of 

time ,t té ù, Dê úë û , but from t +D  and onwards, the best policy is followed. From (2), we 

then have: 

,
(2) ( , , ) ( , , ) ( , ) : ( , , )

t t t t t t
W k x t U k x t V k t v k x t,D

¢ = D, ,D =
   

The value of pursuing or following this policy is of course the short-term benefit over 
the very short period, plus the maximal value following the best policy, from then on, 
given the corresponding initial state at the initial date t +D . Given this way of 
formulating our original problem, we have turned it into a standard problem of finding 
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the value of the scalar 
t

x , when taking into account the corresponding change in the 

state variable, which maximizes ( , , )
t t

v k x t . Then the LHS of (2)’ is equal to 

( , ) max ( , , )
tt x t t

V k t v k x t= . 

Given that the first-order condition fully characterizes an interior maximum, we then 
have: 

,
( , )( , , ) ( , , )

(3) 0tt t t t

t t t

V k tv k x t U k x t

x x x
,D¶ ,D¶ ¶

= D , =
¶ ¶ ¶

        

There are two problems here: First we don’t yet know the function V , which does not 
even have 

t
x  as an argument. How is this last problem solved? We know that the 

current decision will affect the subsequent initial state; hence we can write: 

, ,
( , ) ( , )

t t t

t t t

V k t V k t k

x k x
,D ,D ,D

,D

¶ ,D ¶ ,D ¶
= ×

¶ ¶ ¶
 . Also, because the time period ,t té ù, Dê úë û  is 

very short, we can use the following approximation ( , , )
t t t t t

dk
k k k f k x t

dt,D = ,D = ,D ; 

hence we have 
( , , )t t t

t t

k f k x t

x x
,D¶ ¶

= D
¶ ¶

 . But what about ,
( , )

t

t

V k t

k
,D

,D

¶ ,D

¶
? This is, cf. 

Remark 5 above, equal to the shadow value of real capital equipment, providing a 
measure of the welfare effect of having more capital at t +D , which we have defined 
by ( )tl +D . Using both types of information in (3), we have: 

( , , ) ( , , ) ( , , )
(4) ( ) 0t t t t t t

t t t

v k x t U k x t f k x t
t

x x x
l

¶ ¶ ¶
= D , ,D ×D =

¶ ¶ ¶
 

Cancelling D  while using that (for a small D ), we may write: ( ) ( ) ( )t t tl l l+D = +D  , 

which is used in (4) to yield: 

( , , ) ( , , )
(4) [ ( ) ( )] 0t t t t

t t

U k x t f k x t
t t

x x
l l

¶ ¶
¢ , ,D =

¶ ¶
  

Let 0D ¯ , we get the condition for an optimal control: 

( , , ) ( , , )
(5) ( ) 0t t t t

t t

U k x t f k x t
t

x x
l

¶ ¶
, =

¶ ¶
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The current (short-term) marginal gain is balanced or traded off against the long-term 
effect of the current decision or the marginal long-run cost; cf., (4), (4)’, (4)’’, (10) and the 
first part of (14) in section 2. 

Suppose that the control variable is set so as to obey (5). In that case we have: 

( , ) ( , , ) ( ( ), )
t

V k t U k x t V k t t= D, ,D ,D . Differentiate this with respect to k , so as to 

find the optimal state variable, when using the definitions of the shadow prices as 
derived above. (Note that k itself is not a decision variable; the condition just tells us 
what value k must take in an optimal solution.)  

Then we have, with our previous approximations: 

( , ) ( ( ), ) ( ( ), ) ( )
( )

( )def

V k t U V k t t U V k t t k t
t

k k k k k t k
l

¶ ¶ ,D ,D ¶ ,D ,D ¶ ,D
= = D , = D ,

¶ ¶ ¶ ¶ ¶ ,D ¶
 

( )
( ) ( ) ( ) ( )

def apprx

U k t U
t t k t k t

k k k k
l l

¶ ¶ +D ¶ ¶ é ù= D ++ D = D ++ D +Dê úë û¶ ¶ ¶ ¶
   

2[ ( ) ( )] 1 ( ) ( ) ( ) ( )
apprx

U f U f f
t t t t t t

k k k k k
l l l l l l

é ù¶ ¶ ¶ ¶ ¶ê ú= D ++ D +D = D ++ D + D +Dê ú¶ ¶ ¶ ¶ ¶ë û
    

Cancelling out ( )tl  on both sides, divide through by D  and then let 0D ¯ , we get: 

(6) ( ) ( )
U f

t t
k k

l l
¶ ¶

- = +
¶ ¶

  

This is the analog to (5), (5)’, (5)’’ and (11) in section 2. The interpretation of (6), 
according to Dorfman is: “To a mathematician, l  is the rate at which the value of a unit 
of capital is changing. To an economist, it is the rate at which the capital is appreciating. 
l-   is therefore the rate at which a unit of capital depreciates at time t. Accordingly the 

formula asserts that when the optimal time path of capital accumulation is followed, the 
decrease in value of a unit of capital in a short interval of time is the sum of its 
contribution to profits realized during the interval and its contribution to enhancing the 
value of the capital at the end of the interval.” 
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Therefore the conditions (5), (6) and (1) along with initial state and some terminal 
constraint on the state variable, will fully characterize an intertemporal optimum, as 

given by { }0 0
( ), ( ), ( ); (0) , ( )

t T

t
x t k t t k k a condition on k Tl

=

=
= . 

In a specific problem, cf. our example above, we can (in principle) use (5) to write 
( ) ( ( ), ( ), )x t k t t tf l= , which can be inserted into the two remaining differential equations 

to give a system of differential equations in ( ( ), ( ))k t tl  which in principle can be solved:  

(1) ( ) ( ( ), ( ( ), ( ), ), ) : ( ( ), ( ), )k t f k t k t t t t F k t t tf l l¢ = =  

( ( ), ( ( ), ( ), ), ) ( ( ), ( ( ), ( ), ), )
(6) ( ) ( ) : ( ( ), ( ), )

U k t k t t t t f k t k t t t t
t t k t t t

x k
f l f l

l l l
¶ ¶¢ - = , = L

¶ ¶
  

With given initial and terminal state constraints, 
0

(0)k k= , and, say, ( ) 0
T

k T k= ³ , we 

should be able to determine the entire capital path, as well as the shadow price path, 
with endogenously determined values of (0)l  and ( )Tl , due to the initial and terminal 

state constraints. 

Remark 6: 
The conditions derived above are necessary for an optimal solution. If the functions U  
and f are sufficiently differentiable and jointly concave in ( , )x k , then these conditions 

are sufficient as well. We need as always be cautious for not having found a minimum 
when we want to find a maximum of some problem. Concavity as noted above will 
therefore almost guarantee that the necessary first-order conditions derived here are 
sufficient.  


