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Abstract

The paper revisits the issue of the optimal depletion of an exhaustible resource stock of uncertain size by
recasting it in terms of the hazard function. In addition to re-establishing some of the existing results, it
obtains a complete, qualitative characterization of the optimal depletion program for a fairly large array of
continuous probability distributions that are likely to describe the initial stock distribution. It turns out that
an important feature of the optimal program is the eventual monotonicity of the optimal extraction-cum-
consumption rate, so characteristic of the certainty scenario. Additional results regarding the duration of
the optimal planning horizon and comparison with the situation of perfect certainty provide further insight
into the nature of the optimal depletion program for the iso-elastic utility function.
r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we revisit the issue of the optimal depletion of an exhaustible resource stock of
uncertain size, first considered by Kemp [8]. Commonly known in the literature as the problem of
cake-eating under uncertainty, it has two important aspects: the optimal planning horizon and the
characterization of the optimal program. Since the resource amount to be depleted is uncertain by
assumption, we may surmise that the optimal planning horizon extends sufficiently far into the
future to permit the full exhaustion of whatever is ultimately discovered underground. But, should
see front matter r 2005 Elsevier Inc. All rights reserved.
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this automatically imply that the optimal planning horizon is always infinite, as has been generally
assumed (e.g., [3,4,6,17,18], among others), following the example set by Kemp himself? Or, is it
possible that the optimal planning horizon under some circumstances is of finite duration only, as
recently shown in Kumar [13]? 1 As regards the characterization of the optimal program, Kemp
demonstrated that unlike the case of perfect certainty, the optimal extraction-cum-consumption
rate was not necessarily decreasing over time. Ever since, the overall picture has not changed
much, except for the contributions by Gilbert [3,4] and Loury [17] immediately following Kemp,
and showing that the optimal depletion rate is constant if the initial resource stock is distributed
exponentially.

In what follows, we attempt to make further progress with respect to both aspects of
the problem by making use of the hazard function, a popular tool in duration-data and
survival analyses. In particular, we extend the definitive result in Kumar [13], which holds
only in the context of a discrete probability distribution of the initial resource stock, to all
continuous distributions with finite support and increasing hazard function. Recasting
the problem in this manner also enables us to derive a complete, qualitative characteriza-
tion of the optimal depletion program for a variety of probability distributions and utility
functions, thereby allowing us to view the Gilbert and Loury result as a special case. Additional
results regarding the expected optimal time horizon and comparison with the situation of perfect
certainty help further characterize the optimal program for the special case of the iso-elastic
utility function.

We organize the remainder of the paper as follows. In Section 2, we outline the cake-eating
problem under uncertainty and review the results achieved to date. We devote Section 3 to the
derivation of our results, and Section 4 to presenting the conclusions.
2. The problem

Let the random variable S represent the size of the uncertain resource stock at the start
of the planning period. Denote by f ðsÞ and F ðsÞ; s 2 ð0; s̄�; s̄p1; the probability distribution
and the cumulative probability distribution of S; respectively. Assume that S possesses a finite
mean (expected value) and a finite variance. Also, let qðtÞ stand for the planned extraction-
cum-consumption rate at instant t and, uðqðtÞÞ; for the corresponding instantaneous utility.
It is customary to assume that uðqðtÞÞ is everywhere non-negative and strictly concave. It is
also customary to assume that uð0Þ ¼ 0; that is, no cake implies no utility. If d40 is the constant
time-preference rate or the discount rate, then the cake-eating problem under uncertainty
consists of specifying a contingent extraction-cum-consumption program, fqðtÞgt¼t

t¼t0
; which

maximizes

E

Z t¼t

t¼t0

e	dtuðqðtÞÞ dt

� �
(1)
1It must be noted that Kemp was aware of the possibility. He noted, for example, ‘‘[t]he assumption that the owner of

the cake is immortal is immaterial,’’ and mentioned the possibility of the arrival of ‘‘a moment of sorrow’’ when

consumption of the cake might drop to zero.
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subject toZ t¼t

t¼t0

qðtÞ dtpS; qðtÞX0, (2)

where t0 is the beginning of the planning horizon and t; a random variable, denotes the uncertain
terminal date at which the resource stock is fully depleted.2 The expectation in (1) is taken over the
probability distribution of t as dictated by f ðsÞ and the planned path of qðtÞ: If GðtÞ now stands for
the cumulative probability distribution of t; it follows that

GðtÞ ¼ ProbðtptÞ ¼ Prob Sp
Z t

0

qðrÞ dr

� �
¼ F

Z t

0

qðrÞ dr

� �
¼ F ðQðtÞÞ, (3)

where

QðtÞ ¼

Z t

0

qðrÞ dr (4)

is the cumulated planned extraction-cum-consumption to date t; and t0 has been set to equal zero
without any loss of generality. As a result, (1) assumes the form

Z T

0

Z t

0

e	dtuðqðtÞÞ dt dGðtÞ; 0otpT , (5)

where T is the least upper bound of the support of the implied probability distribution of t and is
unknown ex ante. In other words, T is the maximum time over which consumption is possibly
strictly positive. Since GðTÞ ¼ F ðQðtÞÞ ¼ 1 by definition, it follows that T is such that
limt!T QðTÞ ¼ s̄; and rewriting (1) in this manner transforms the problem of determining the
optimal planning horizon into one of specifying a value for T : Clearly, T can be finite or infinite.

Unless stated otherwise, we assume in the rest of the paper that f ðsÞ is continuous and
differentiable over ð0; s̄�:3 Thus dGðtÞ ¼ dF ðQðtÞÞ ¼ f ðQðtÞÞqðtÞ dt with Gð0Þ ¼ F ðQð0ÞÞ ¼ 0 and
GðTÞ ¼ F ðQðTÞÞ ¼ 1; and the functional in (5) may be written as

Z T

0

f ðQðtÞÞqðtÞ
Z t

0

e	dtuðqðtÞÞ dt

� �
dt. (6)

Upon integration by parts and appropriate substitutions (6) becomes

Z T

0

e	dtuðqðtÞÞ½1	 F ðQðtÞÞ� dt, (7)

thereby transforming the preceding stochastic optimal control problem into a deterministic one of
maximizing the functional in (7) subject to the constraints

Q_ðtÞ ¼ qðtÞ; qðtÞX0 (8)
2Strictly speaking, this is true only if uð0Þ ¼ 0: In case uð0Þ40; the expression in (1) must be expanded to include the

certain benefits that may accrue following resource exhaustion.
3Strictly speaking, all we need assume is piece-wise continuity and differentiability.
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and the boundary conditions

Qð0Þ ¼ 0; lim
t!T

QðtÞ ¼ s̄ (9)

with T40 free.4 The terminal boundary condition, which is not always explicitly stated, is simply
a restatement of the requirement that GðTÞ ¼ F ðQðTÞÞ ¼ 1 and implies that the support of t
extends just sufficiently far into the future to allow for the complete exhaustion of the maximum
possible resource amount in ground.

Koopmans [11,12] is generally recognized as being the first to specifically consider the issue of
the optimal time horizon in the context of a cake-eating problem. While investigating the issue
under perfect certainty, he observed that if survival required a minimum level of consumption, the
maximum time-period over which the economy could survive—the optimal resource exhaustion
time—was finite and shorter than that for d ¼ 0 as long as uðqðtÞÞ was bounded from above and
limqðtÞ!1 u0ðqðtÞÞ ¼ 0: Subsequently, Dasgupta [1] and Dasgupta and Heal [2] pointed out that if
uðqðtÞÞ was not bounded from above and limqðtÞ!0 u0ðqðtÞÞ ¼ 1; qðtÞ was trivially assured to be
always positive so that a finite resource exhaustion time could not be optimal. At about the same
time, Vousden [19] observed that if the exhaustible resource was not the only source of
consumption, creating the possibility of uð0Þ40; a clear distinction needed to be drawn between
the survival and resource exhaustion times in that the former could be considerably longer. Since
then Highfill and McAsey [5] and Kumar and Naqib [14] have further expanded the scope of the
Dasgupta–Heal result by proving that, provided uð0Þ ¼ 0; the limiting behavior of u0ðqðtÞÞ is the
sole determinant of the optimal T under perfect certainty such that optimal To1ð¼ 1Þ if and
only if limqðtÞ!0 u0ðqðtÞÞo1ð¼ 1Þ:5 More recently, Kumar[13] has shown that this perfect
certainty result can be fully extended to the case of resource stock uncertainty as well, provided it
is represented by a discrete probability distribution admitting at most a finite number of values.

The history of the characterization of the optimal extraction-cum-consumption program or the
depletion policy is even shorter. Almost at the heal of the original contribution by Kemp, Loury
[17] demonstrated that optimal qðtÞ was constant if and only if f ðsÞ was exponential. Gilbert [4]
also derived a similar result based on a highly specialized, discrete f ðsÞ with unbounded support,
but illustrated his finding for iso-elastic uðqÞ and exponential f ðsÞ: However, both Loury and
Gilbert presumed optimal T to be infinite. While Kumar [13] has recently attempted to deal with
both issues simultaneously, the suggested procedure is developed in the context of a discrete
probability distribution with finite support and cannot be extended to the case of a continuous
one, the focus of both the original Kemp study and the attempt here. The difficulty, in our view,
lies in the differential information extraction generates in the two cases. When f ðsÞ is discrete,
continuing extraction beyond the level of proven reserves reveals at infinitesimal cost (because of
the infinitesimal extraction effort necessary for the purpose) the minimum amount of the resource
still under ground. This transforms the problem into one of choosing a sequence of appropriate
time horizons to optimally deplete the currently proven reserves in the light of the latest update of
4See Kemp [8, pp. 298–299]. Loury [17] also notes the equivalence of the two problems.
5Assuming uð0Þ ¼ 0 eliminates the distinction between resource exhaustion time and survival time of the economy. In

ours and the Dasgupta–Heal version of the cake-eating problem, therefore, T stands for the planning horizon, the

resource exhaustion time, the survival time as well as for the so-called ‘‘moment of sorrow’’ of Kemp and the

‘‘doomsday’’ of Koopmans.
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f ðsÞ: This virtually costless generation of additional information is not possible in the case of a
continuous probability distribution, for now infinitesimal extraction can at best reveal the
presence underground of no more than an infinitesimal amount of the resource, thereby leaving
the level of proven reserves unchanged for the next period.

In the next section, we attempt a solution of the problem by making use of the hazard function
and show how some of these difficulties may be overcome.
3. Characterizing the optimal program

As the Hamiltonian associated with the planning problem of the preceding section is

H ¼ uðqÞpðQÞe	dt þ lq, (10)

the necessary conditions for an optimal program include, in addition to (8) and (9),

u0ðqÞpðQÞe	dt ¼ 	l, (11)

_l ¼ 	uðqÞp0ðQÞe	dt, (12)

lim
t!T

H ¼ 0, (13)

where pðQÞ ¼ 1	 FðQÞ is the survival function; lp0 is the co-state variable; and the explicit
dependence of the various functions on t has been suppressed for ease in notation.6 Next,
differentiating (11) with respect to t and substituting from (12) yield

_q

q
¼

fðqÞhðQÞ 	 d
�ðqÞ

, (14)

_l
l
¼ 	

uðqÞ

u0ðqÞ
hðQÞ, (15)

where

fðqÞ ¼ ðuðqÞ=u0ðqÞÞ 	 q; �ðqÞ ¼ 	u00ðqÞq=u0ðqÞ40; and

hðQÞ ¼ 	p0ðQÞ=pðQÞ ¼ f ðQÞ=½1	 F ðQÞ�X0.

Eqs. (14) and (15) are standard means of describing the optimal depletion policy, but we have
written them in a somewhat unfamiliar form by utilizing three different functions to isolate the
impact of different factors.7

The first two functions—fðqÞ and �ðqÞ—concern different aspects of the utility function. It is
easy to check that fðqÞX0 and f0

ðqÞ ¼ 	uðqÞu00ðqÞ=½u0ðqÞ�240 for qX0; reflecting the strict
concavity of uðqÞ: �ðqÞ is a measure of the degree of risk aversion implied by the concavity of uðqÞ

and is always positive.
6The difference between (13) and the transversality condition stipulated in Kemp [8] is entirely due to our contention

that T is endogenous and may not be pre-specified in the case of an uncertain stock.
7For example, (14) is exactly the same as Eq. (18) in Loury [17, p. 626].
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The third function, hðQÞ; called the hazard function, is an alternative means of describing the
uncertainty aspects of the problem. In stricter probability terms, it is an instantaneous failure rate
used to specify the conditional probability that the spell of the event described by a random
variable will not last beyond when it takes a specific value, given that it has lasted till then.8 In the
present context, the event of interest is the exhaustion of the uncertain resource stock S so that
hðQðtÞÞDQðtÞ may be interpreted as the conditional probability that S will be fully exhausted once
cumulated extraction reaches QðtÞ; given that it is initially at least as large as QðtÞ; or, equivalently,
the conditional probability that S will be fully exhausted at instant t given that positive extraction
has lasted until then.9

As regards the properties of hðQÞ; no restrictions other than non-negativity may be generally
imposed a priori. In the context of exhaustible natural resources, however, we may surmise that it is
monotonic and increasing in Q if s̄o1: While a constant hazard rate implies that the conditional
probability that the resource stock will be exhausted shortly remains unchanged regardless of how
large an amount has been already extracted—clearly unrealistic in the face of an ultimately finite
stock—a declining hazard function suggests an even more unrealistic scenario. The said probability
actually declines with cumulated extraction. In what follows, therefore, we associate a finite s̄ with
only a rising hazard function.10 However, we make no such stipulations if s̄ ¼ 1:

We begin our characterization of the optimal depletion program with the case of s̄o1: Under
the assumption that h0ðQÞ40 always, consider the extraction decision for period t: A rising hazard
function, as explained above, implies that the likelihood that the uncertain resource stock, having
generated positive extraction to date, will be fully exhausted at the close of the period is greater
than in the preceding period. Given that this is the only initial information that gets updated
between periods, an increasing hazard function is a signal that the uncertain resource stock may
be smaller than previously expected. Other things remaining equal, reducing the extraction rate
would appear to be the rational economic response. As t can stand for any time-period, a
continuously declining extraction rate until exhaustion would appear to be the optimal depletion
policy. Moreover, the optimal extraction rate at exhaustion would be zero if the hazard were to
rise in unbounded fashion.

But, how long does it take to exhaustion? Intuitively, continuing positive extraction and the
consequent extension of the time-horizon is desirable as long as expected benefits—
u0ðqÞpðQÞe	dt—from doing so are positive. Since marginal utility of extraction rises along the
8For a non-negative, continuous random variable X ; the hazard function is defined as

hðxÞ ¼ lim
Dx!0

PðxpXox þ DxjXXxÞ

Dx
¼ lim

Dx!0

PðxpXox þ DxÞ=PðXXxÞ

Dx
¼

f ðxÞ

1	 F ðxÞ
¼ 	

p0ðxÞ
pðxÞ

,

where pðxÞ is the survival rate for X : See [7]. Kiefer [9] and Lancaster [15] are excellent sources for economic and

econometric applications.
9Since GðtÞ ¼ F ðQðtÞÞ; the hazard function for exhaustion time, t; may be written as

hðtÞ ¼ lim
Dt!0

Pðtptot þ DtjtXtÞ

Dt
¼

dGðtÞ=dt

1	 GðtÞ
¼

f ðQðtÞÞqðtÞ

1	 F ðQðtÞÞ
¼ 	

p0ðQðtÞÞqðtÞ

pðQðtÞÞ
.

.
10The fact that an increasing hazard rate is normally associated with survival models involving natural aging or wear

provides further support for the stipulated characterization. See [10,16].
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optimal program, expected benefits are not likely to become zero in finite time if marginal utility is
not bounded from above. By the same token, a finite time horizon may become possible if
marginal utility at zero is finite. Proposition 1 below formally confirms our intuition on these
scores.

Proposition 1. Provided uð0Þ ¼ 0; s̄o1; h0
ðQÞ40 and limQ!s̄ hðQÞ ¼ 1; optimal T ¼ ðoÞ1 if

and only if u0ð0Þ ¼ ðoÞ1; and optimal q continuously declines to zero.

Proof. See appendix.11 &

The general result of Proposition 1 is easily adopted to the more specific case of the iso-elastic
utility function, leading to a more definitive characterization of the optimal depletion policy.

Corollary 1. If s̄o1; uðqÞ ¼ qZ; 0oZo1; and h0
ðQÞ40 such that limQ!s̄ hðQÞ ¼ 1; optimal q

asymptotically declines to zero as described by the equation: qðtÞ ¼ qð0Þe	
d

1	ZtpðQðtÞÞ	
1
Z:

Proof. Given that limq!0 u0ðqÞ ¼ Zq	ð1	ZÞ ¼ 1; optimal T ¼ 1: The rest follows from adapting
Eqs. (14) and (15) to the specific case and solving them. &

We turn next to the case when s̄ ¼ 1: Intuition suggests that To1 cannot be optimal, for one
could consistently extract infinite amounts of the resource at each and every instant for the
duration of T and yet not exhaust the initial stock. Proposition 2 below formally confirms our
conclusion under minimal restrictions on the utility function.

Proposition 2. If uð0Þ ¼ 0; limq!1 u0ðqÞ ¼ 0 and a solution to the cake-eating problem of the

preceding section exists, s̄ ¼ 1 implies optimal T ¼ 1:

Proof. See appendix. &

Knowing in advance that optimal T ¼ 1 is of immense help in characterizing the optimal
depletion policy, for it helps specify the optimal terminal extraction rate in terms of the limiting
behavior of the hazard function. To see this more clearly, combine (11) and (12) to yield

lim
t!1

u0ðqðtÞÞ ¼ lim
t!1

	_lðtÞ
p0ðQðtÞÞqðtÞe	dt 	 dpðQðtÞÞe	dt

¼ lim
t!1

uðqðtÞÞ

qðtÞ þ d=hðQðtÞÞ
(16)

or, equivalently,

lim
t!1

fðqðtÞÞ ¼ d=hðs̄Þ. (17)

Given that both u0ðqÞ and fðqÞ are continuous and monotonic in q; either of (16) and (17) may be
used to determine uniquely optimal terminal q:

Combining this information with our intuition regarding how the hazard function impacts on
optimal extraction as stated in the context of Proposition 1 leads easily to the specification of the
optimal depletion policy for different characterizations of the hazard function in the manner
stated in the following result.

Proposition 3. If uð0Þ ¼ 0; limq!1 u0ðqÞ ¼ 0; and s̄ ¼ 1; (i) h0ðQÞ40 as Q becomes sufficiently
large implies that, except possibly for a finite phase at the start, optimal q declines continuously to
11Unless a proof is extremely short, it is relegated to the appendix in the interest of exposition.
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zero (a finite positive amount) accordingly as limQ!1 hðQÞ ¼ 1ðo1Þ: (ii) h0
ðQÞo0 as Q becomes

sufficiently large implies that, except possibly for a finite phase at the start, optimal q rises
continuously in unbounded fashion (to a finite positive amount) accordingly as limQ!1 hðQÞ ¼

0ðo1Þ:

Proof. See appendix. &

Just as in the case of s̄o1; a more definitive characterization of the optimal depletion policy
can be obtained for the iso-elastic utility function, uðqÞ ¼ qZ; 0oZo1; while f ðsÞ remains fairly
general.

Corollary 2. If uðqÞ ¼ qZ; 0oZo1; and s̄ ¼ 1; (i) the optimal depletion policy is described by
qðtÞ ¼ qð0Þe	

d
1	Z tpðQðtÞÞ	

1
Z; (ii) except possibly for a finite phase at the start, optimal q declines

continuously to zero (a finite positive amount) if h0
ðQÞ40 for Q sufficiently large and

limQ!1 hðQÞ ¼ 1ðo1Þ; (iii) except possibly for a finite phase at the start, optimal q rises
continuously in unbounded fashion (to a finite positive amount) if h0ðQÞo0 for Q sufficiently large

and limQ!1 hðQÞ ¼ 0ðo1Þ:

Proof. Follows directly from adapting Eqs. (14)–(16) to the special case of the iso-elastic utility
function.12 &

Corollary 2 encompasses Gilbert’s [3,4] attempt at characterizing the optimal program for the
iso-elastic utility function. Even though Gilbert considered only a discrete probability
distribution, its description was essentially equivalent to assuming that the shape of the
associated hazard function, at least in its continuous analog, was the same as that stipulated in the
statement of the corollary.13

While Proposition 3 does not directly cover the case of the constant hazard rate implied by the
exponential distribution, our method is general enough to permit a full analysis of this special
case. In fact, the additional information that the underlying probability distribution is exponential
enables us to obtain a somewhat more general result than that implied by Proposition 3 above.

Proposition 4. If uð0Þ ¼ 0 and limq!1 u0ðqÞ ¼ 0; qðtÞ ¼ f	1
ðd=gÞ forever is the optimal depletion

program if and only if f ðsÞ is exponential with the hazard rate of g:

Proof. See appendix. &

Proposition 4 reproduces one of Loury’s results bearing on the issue of the present paper.
Moreover, if we adapt Proposition 4 to analyze the even more specialized case of the iso-elastic
utility function combined with the constant hazard rate of the exponential distribution, we notice
at once that the constant optimal depletion rate is given by q̄ ¼ f	1

ðd=gÞ ¼ dZð1	 ZÞ	1g	1 as first
derived by Gilbert.

In continuing to explore further the special case of the iso-elastic utility function and
exponential distribution, we note that Proposition 4 also implies

Corollary 3. If uðqÞ ¼ qZ; 0oZo1; and f ðsÞ ¼ ge	gs; sX0; 14g40; EðtÞ ¼ ð1	 ZÞðdZÞ	1 and
V ðtÞ ¼ ½ð1	 ZÞ=dZ�2:
12The limiting value of q is given by: limt!1 qðtÞ ¼ dZ
1	Z limt!1ðhðQðtÞÞ	1

¼
dZ
1	Z

1
hðs̄Þ

:
13Part (ii) of the corollary. Gilbert [4, pp. 51–52].
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Proof. Follows from the straightforward computation of EðtÞ and V ðtÞ in the light of
q̄ ¼ f	1

ðd=gÞ ¼ dZð1	 ZÞ	1g	1: &

Hence, both the expected value and the variance of the optimal planning horizon are
independent of the expected value of the uncertain stock. Though apparently counter-intuitive,
the result is easily explained. Since, the constant optimal extraction-cum-consumption rate, as
specified above, is directly proportional to the expected value, 1=g; of the initial resource stock, the
expected optimal exhaustion time is simply the inverse of the constant of proportionality, dZ=ð1	
ZÞ: In other words, if the distribution of the uncertain resource stock is exponential, a larger
expected stock at the start simply translates into a proportionately less conservative depletion of
the resource stock. The independence of the variance, however, is merely a consequence of the
special nature of the exponential distribution.

It may also be of some interest to compare the nature of the optimal depletion program as
described by Propositions 1–4 with that under certainty. For iso-elastic uðqÞ and exponential f ðsÞ

Gilbert [4] has shown that although the optimal extraction policy under uncertainty is initially
more conservative than that aimed at extracting EðSÞ; it eventually becomes less so. As the use of
the hazard function allows us to provide a more definitive description of the optimal depletion
policy under iso-elastic utility (Corollaries 1 and 2), we can considerably expand the scope of the
Gilbert result.

Proposition 5. If uðqÞ ¼ qZ; 0oZo1; and hðQÞ is monotonic in Q; the optimal depletion policy under
uncertainty is more conservative than that aimed at depleting EðSÞ under certainty for at most a finite

initial phase.14

Proof. See appendix. &
4. Conclusions

Above we have reconsidered the problem of optimal depletion of an exhaustible resource stock
of an uncertain size in its two aspects—the duration of the optimal planning horizon and the
characterization of the optimal depletion program—by utilizing the analytical tool of the hazard
function.

With respect to the first aspect, we have shown that if the uncertain stock is ultimately finite so
that the associated hazard rate rises in unbounded fashion, the optimal planning horizon is finite
(infinite) accordingly as the marginal utility of extraction-cum-consumption at zero is finite
(infinite).This extends the scope of the earlier result due to Kumar [13] to a fairly broad class of
continuous distributions of the initial stock. If, however, the size of the uncertain stock is
unbounded, we have shown that the optimal planning horizon is infinite, regardless of the
underlying probability distribution.

The use of the hazard function has also allowed us to contribute with respect to the second
aspect. In addition to furnishing alternative proofs of the existing results with regard to the
specialized cases of the iso-elastic utility function and/or exponential distribution, we have been
able to obtain a reasonably complete, qualitative characterization of the optimal depletion
14The original Gilbert result—[4], p. 52—may also be derived following exactly the same procedure.
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program for a fairly large class of probability distributions that are likely to characterize the initial
resource stock. More specifically, we have demonstrated that, regardless of the ultimate size of the
uncertain stock, the optimal extraction-cum-consumption declines continuously, provided the
underlying resource stock distribution possesses a continuously increasing hazard function. If,
however, the underlying stock distribution were to possess a hazard function that continuously
declines (remains constant) as cumulated extraction becomes sufficiently large—and these are
realistic possibilities only in the case of an ultimately unbounded resource stock—the optimal
extraction-cum-consumption rate continuously increases (remains constant), except for a finite
phase at the start. In short, the optimal extraction-cum-consumption rate over time generally
moves in monotonic fashion in the direction opposite to that of the hazard rate.

Finally, we have presented some results that help characterize further the optimal depletion
program for the specialized case of iso-elastic utility. Of particular interest in this context is the
demonstration that as long as hazard is monotonic, the optimal extraction-cum-consumption rate
is generally more conservative than that under certainty for at most a finite initial phase.
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Appendix
Proof of Proposition 1. We make use of the phase diagram of q as implied by Eq. (14). Given that
uð0Þ ¼ 0 implies fð0Þ ¼ 0 and that h0ðQÞ40 with limQ!s̄ hðQÞ ¼ 1; (14) ensures that the q

�
¼ 0

contour, denoted by q̄ðQÞ; exists such that

dq̄ðQÞ

dQ
¼ 	

fðq̄Þ
f0
ðq̄Þ

h0
ðQÞ

hðQÞ
o0; 0pQps̄ (A.1)

and q̄ðs̄Þ ¼ 0: Thus, as shown in Fig. 1, there may exist at most three possible characterizations of
the optimal depletion program: optimal q rises continuously until exhaustion; optimal q rises
continuously until exhaustion, except for an initial finite phase of continuous decline; and,
optimal q declines continuously until exhaustion.

The first two scenarios must of necessity imply optimal To1 and optimal qðTÞ40: The third,
on the other hand, suggests optimal qðTÞ ¼ 0 but says nothing about the magnitude of T :
However, as u0ðqÞ40 and pðQðTÞÞ ¼ 0 by definition, it follows from (11) that lðTÞ ¼ 0 as well.
Consequently, (11) and (12) together yield

u0ðqðTÞÞ ¼ lim
t!T

	_lðtÞ
p0ðQðtÞÞqðtÞe	dt 	 dpðQðtÞÞe	dt

¼ lim
t!T

uðqðtÞÞ

qðtÞ þ d=hðQðtÞÞ
¼

uðqðTÞÞ

qðTÞ
(A.2)

because limt!T hðQðtÞÞ ¼ hðs̄Þ ¼ 1: It is easy to see that (A.2) is equivalent to the requirement
that fðqðTÞÞ ¼ 0; which, given our assumptions, can be satisfied if only if qðTÞ ¼ 0: Moreover, it is
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Fig. 1. Optimal program when s̄o1:
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easy to verify that terminal values of zero for both l and q are also consistent with the
transversality condition (13), leading to the conclusion that a unique optimal depletion policy
exists and is characterized by the third possibility alone.

As regards the assertion regarding the optimal planning horizon, it suffices to show that
optimal T ¼ 1ðo1Þ accordingly as u0ð0Þ ¼ 1ðo1Þ: First, upon multiplying both sides of (14)
by �ðqÞ and integrating, we obtain

u0ðqðTÞÞ ¼ u0ð0Þ ¼ u0ðqð0ÞÞe

R T

0
½d	fðqðtÞÞhðQðtÞÞ� dt

. (A.3)

Optimal _qðtÞo0 ensures that the expression within the square brackets in (A.3) is always positive
so that the right-hand side of (A.3) increases with T : In view of the uniqueness of the optimal
0ou0ðqð0ÞÞo1; it immediately follows that optimal T ¼ 1 whenever u0ð0Þ ¼ 1:

Next, let u0ð0Þo1 and suppose, if possible, that optimal T ¼ 1: Since u00ðqðtÞÞo0 for all q and
optimal _qðtÞo0; it follows that u0ðqðtÞÞ; as a function of t; must approach its maximum value in an
asymptotic manner only. As optimal qðTÞ ¼ 0; this must imply limt!1 u00ðqðtÞÞ ¼ u00ð0Þ ¼ 0; a
contradiction because uðqÞ is strictly concave. &

Proof of Proposition 2. Suppose, if possible, that optimal To1: It immediately follows that
optimal q must become infinite at T : Also, as pðQðTÞÞ must, of necessity, equal zero, (11) demands
that lðTÞ ¼ 0 as well. But, with uðqÞ strictly concave, (11) and (12) together imply

_l
l
¼

uðqÞ

u0ðqÞ

p0ðQÞ

pðQÞ
¼ hðQÞq 	 cðtÞo0, (A.4)
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where 0pcðtÞo1 is a suitably defined slack function. Next, solving for lðtÞ and substituting back
in (11) yields

u0ðqðtÞÞ ¼ 	lð0Þe
R t

0
ðd	cðrÞÞ dr

. (A.5)

If we now assume that limq!1 u0ðqÞ ¼ 0; (A.5) presents a contradiction when t ! T ; for, in the
limit, the right-hand side remains a finite positive number. &

Proof of Proposition 3. Proceeding in the manner of Proposition 1, we note that (i)–(iv) below are
sufficient for establishing the proposition. (i) The _q ¼ 0 contour in the phase portrait (Fig. 2) of
Eq. (14) is negatively (positively) sloped accordingly as h0

ðQÞ40ðo0Þ; (ii) the terminal q along the
_q ¼ 0 contour and the optimal terminal q as specified by (17) are always exactly the same; (iii)
optimal terminal q is zero/finite/infinite accordingly as limQ!1 hðQÞ ¼ hðs̄Þ ¼ 1=o1= ¼ 0; (iv)
the uniqueness of the optimal terminal q implies that the optimal depletion policy is unique. &

Proof of Proposition 4. If g40 is the constant hazard rate, (14) becomes

_q

q
¼

fðqÞg	 d
�ðqÞ

, (A.6)

so that the resultant _q ¼ 0 contour is a horizontal line in the non-negative orthant of the ðQ; qÞ
plane and is defined by q̄ðQÞ ¼ f	1

ðd=gÞ: Once again, there exist at most three possible
characterizations of the optimal program: optimal q rises continuously; optimal q declines
continuously; or optimal q stays constant forever. However, since (17) now demands that optimal
terminal q ¼ q̄ ¼ f	1

ðd=gÞ; the options of continuously rising or declining q as optimal programs
are ruled out. As a constant q forever also satisfies the transversality condition, we may conclude
that q ¼ q̄ ¼ f	1

ðd=gÞ forever is the unique optimal program.
It is also quite easy to see that the converse result holds as well. If q ¼ q̄ forever were the

optimal program, (14) would imply that hðQÞ ¼ dq̄=fðq̄Þ is a constant. This is sufficient to infer
that the underlying f ðsÞ must be exponential with a hazard rate of g ¼ dq̄=fðq̄Þ: &
q q

Q
0 0

Panel A:h′ (Q)> 0 eventually Panel B:h′ (Q)< 0 eventually

⋅q < 0
⋅q < 0

⋅q > 0
⋅q > 0

⋅q = 0
⋅q = 0

q (0)

q (0)

Q

Fig. 2. Optimal program when s̄ ¼ 1:
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Proof of Proposition 5. We consider first the case when s̄ ¼ 1: From Corollary 2, optimal
depletion policy is

qðtÞ ¼ qð0Þe	
d

1	Z tpðQðtÞÞ	
1
Z.

Moreover, optimal q continuously declines (rises) forever accordingly as h0
ðQÞ40ðo0Þ: If W ðSÞ

denotes the maximum expected life-time utility from optimally depleting the uncertain stock, it
follows that

W ðSÞ ¼ qð0ÞZ
Z 1

0

e	
d

1	Zt dt ¼ qð0ÞZ
1	 Z
d

.

Next, if ~S represents the certainty equivalent stock and, V ð ~SÞ; the corresponding maximum life-
time utility from optimally depleting it over the same horizon as S; it is well known that optimal

~qðtÞ ¼ ~qð0Þe	dð1	ZÞ	1t and V ð ~SÞ ¼ ~qð0ÞZ
Z 1

0

e	
d

1	Zt dt ¼ ~qð0ÞZ
1	 Z
d

.

Since W ðSÞ ¼ V ð ~SÞ; by definition, we may infer that qð0Þ ¼ ~qð0Þ and qðtÞ4 ~qðtÞ for t40: Now
invoking that EðSÞ4 ~S for all S would ensure the result, for qðtÞ to optimally deplete EðSÞ over the
same time horizon is greater than that for ~S for all t:

We turn next to the case when s̄o1: In the light of the discussion in the text, we need examine
only the situation of h0ðQÞ40 for all Q: Since Corollary 1 ensures that the optimal qðtÞ declines
continuously until exhaustion according to

qðtÞ ¼ qð0Þe	
d

1	Z tpðQðtÞÞ	
1
Z,

we may establish the result by proceeding in exactly the same manner as in the preceding case.
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