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Abstract

This note gives a brief, non-rigorous sketch of basic optimal con-

trol theory, which is a useful tool in several simple economic problems,

such as those in resource and environmental economics. While the

mathematical analysis in the note is self-contained, there is not much

explanation and intuition on the economic issues. The note should

therefore be read together with articles or books that give more dis-

cussion of the economics of the problems considered.
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1 Introduction

This note gives a brief, non-rigorous sketch of basic optimal control theory,

which is a useful tool in several simple economic problems, such as those in

resource and environmental economics. The basic theory is given in section

2, and the subsequent sections are applications to several problems in re-

source and environmental economics. The note should be read together with

articles or books that give more discussion of the economics of the problems

considered.

2 The basic theory

Consider the dynamic optimization problem

max

∫ ∞
0

e−rtf(x(t), S(t), t)dt (1)

subject to

Ṡ(t) = g(x(t), S(t), t) (2)

S(0) = S0 historically given (3)

S(t) ≥ 0 for all t (4)

where f and g are continuous and differentiable functions (and in many

cases concave in (x, S)), and r is an exogenous positive discount rate. The

variable S(t) is a stock variable, also called a state variable, and can only

change gradually over time as given by (2). The variable x(t), on the other

hand, is a variable that the decision maker chooses at any time. It is often

called a control variable. In many economic problems the variable x(t) will

be constrained to be non-negative.

Remark 1: In the problem above there is only one control variable and

one state variable. It is straightforward to generalize to many control and

state variables, and the number of control variables need not be equal to the

number of state variables.

2



Remark 2: The constraint (4) is more general than it might seem, as we

often can reformulate the problem so we get this type of constraint. Assume

e.g. that the constraint was S(t) ≤ S̄. We can then reformulate the problem

by defining Z(t) = S̄−S(t), implying that Z(t) ≥ 0. In this case the dynamic

equation (2) must be replaced by Ż = −g(x(t), S̄ − Z(t), t) and S(t) in (1)

must be replaced by S̄ − Z(t).

The current value Hamiltonian

The current value Hamiltonian H is defined as

H(x, S, λ, t) = f(x, S, t) + λg(x, S, t) (5)

where λ(t) is continuous and differentiable. The variable λ(t) is often called

a co-state variable. This variable will be non-negative in all problems where

"more of the state variable" is "good". More precisely: The derivative of the

maximized integral in (1) with respect to S0 is equal to λ(0). For this reason

λ(t) is also often called the shadow price of the state variable S(t).

Conditions for an optimal solution

A solution to the problem (1)-(4) is a time path of the control variable

x(t) and an associated time path for the state variable S(t). For optimal

paths, there exist a differentiable function λ(t) and a piecewise continuous

function γ(t) such that the following equations must hold for all t:

∂H(x(t), S(t), λ(t), t)

∂x
= 0 (6)

λ̇(t) = rλ(t)− ∂H(x(t), S(t), λ(t), t)

∂S
− γ(t) (7)

γ(t) ≥ 0 and γ(t)S(t) = 0 (8)

Limt→∞e
−rtλ(t)S(t) = 0 (9)

Remark 3: If x(t) is constrained to be non-negative, (6) must be replaced

by ∂H
∂x
≤ 0 and ∂H

∂x
x(t) = 0.

Remark 4: An alternative and equivalent formulation of our problem
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would be to include the term +γS in the Hamilton defined by (5). With this

modification equation (7) would simply be (ignoring the time references)

λ̇ = rλ− ∂H
∂S
.

Remark 5: If we know from the problem that S(t) > 0 for all t, we can

forget about γ(t), since it always will be zero.

Remark 6: Condition (9) is a transversality condition. Transversality con-

ditions are simple in problems with finite horizons, but considerably more

complicated for problems with an infinite horizon (like our problem). Most

often, however, the simple condition (9) can be included in the set of neces-

sary conditions.

Remark 7: If f and g are concave in (x, S) and λ(t) ≥ 0, the conditions

(6)-(9) are suffi cient for an optimal solution. If we can find a time path for

x(t) and for S(t) satisfying (6)-(9) in this case, we thus know that the time

paths (x(t), S(t)) are optimal.

Remark 8: As mentioned in Remark 1, it is straightforward to generalize

to many control and state variables. If there are n state variables, there are

also n co-state variables (λ1, ...λn), n Lagrangian multipliers (γ1...γn), and n

differential equations of each of the types (2) and (7).

3 The optimal use of a non-renewable resource

Consider the dynamic optimization problem

max

∫ ∞
0

e−rtu((x(t))dt (10)

subject to

Ṡ(t) = −x(t) (11)

S(0) = S0 historically given initial resource stock (12)

x(t) ≥ 0 for all t (13)

S(t) ≥ 0 for all t (14)
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where u(0) = 0, u′ > 0, u′′ < 0 and u′(0) = b. The Hamiltonian in this case

is

H(x, S, λ) = u(x)− λx

and the conditions (6)-(9) are now

∂H

∂x
= u′(x(t))− λ(t) ≤ 0 and [u′(x(t))− λ(t)]x(t) = 0 (15)

λ̇(t) = rλ(t)− γ(t) (16)

γ(t) ≥ 0 and γ(t)S(t) = 0 (17)

Limt→∞e
−rtλ(t)S(t) = 0 (18)

As long as S(t) > 0 we have γ(t) = 0 implying from (16) that

λ̇(t) = rλ(t) or λ(t) = λ(0)ert (19)

It follows from (15) and (19) that ẋ(t) ≤ 0. For x(t) > 0 we have

u′(x(t) = λ(0)ert

giving a declining x(t). At some time T , λ(0)erT = b, giving x(T ) = 0 since

u′(0) = b. The resource stock must reach 0 at T : S(T ) < 0 would violate the

condition S(t) ≥ 0 for all t, while S(T ) > 0 would violate the transversality

condition (18).

To conclude: Optimal resource extraction declines gradually over time,

making the marginal utility u′ rise over time at the rate r. Extraction even-

tually reaches zero; this occurs simultaneously with the resource stock being

completely depleted. In a market economy u′ may be interpreted as the price

of the good, so that our result states that the optimal resource price should

rises at the rate of interest until the resource is completely depleted. This

resul twas first given by Hotelling (1931).
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4 Non-renewable resource extraction with ris-

ing extraction costs

In section 3 it was assumed that resource extraction was limited by a physical

limit of available resources. For most resources it is more reasonable to

assume that there resource extraction is limited by the costs of extraction,

and that extraction costs are higher the lower are the remaining physical

resources. With the same notation as in section 2, we can model this as

extraction costs being equal to xc(S), with c(S) having the properties that

c′ < 0 and c(0) > u′(0) = b. In words, the last inequality says that as the

resource stock becomes suffi ciently small, the extraction cost will exceed the

marginal willingness to pay for even a small amount of the resource. This

inequality implies that it will never be optimal to extract all of the resource.

Hence, the restriction S(t) ≥ 0 will be redundant in the present case.

The optimization problem in section 3 is now changed to

max

∫ ∞
0

e−rt [u((x(t))− x(t)c(S(t)] dt (20)

subject to

Ṡ(t) = −x(t) (21)

S(0) = S0 historically given initial resource stock (22)

x(t) ≥ 0 for all t (23)

where as before u(0) = 0, u′ > 0, u′′ < 0 and u′(0) = b. The Hamiltonian in

this case is

H(x, S, λ) = u(x)− xc(S)− λx (24)

and the conditions (6)-(9) are now replaced by (for x(t) > 0, see below)1

∂H

∂x
= u′(x)− c(S)− λ(t) = 0 (25)

1From now on we skip explicit time references at most places where this cannot cause
any misunderstanding.
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λ̇ = rλ+ xc′(S) (26)

Limt→∞e
−rtλ(t)S(t) = 0 (27)

Whenever extraction is positive it follows from (25) that

u′(x) = c(S) + λ (28)

Differentiating with respect to time gives

u̇′ = c′(S)Ṡ + λ̇

Inserting (21), (26) and (28) into this expression gives

u̇′ = r [u′(x)− c(S)] (29)

From (26) it is clear that if extraction stops while λ 6= 0, the transversality

condition (27) will be violated. Similarly, if λ becomes negative, it follows

from (26) that the transversality condition will be violated (since c′ < 0).

The equilibrium time path of λ(t) therefore must reach zero as extraction

approaches zero. In other words, the long-run stock of the resource must

approach a value S∗ given by c(S∗) = b.

Note that the resource stock S∗ will only be reached asymptotically. To

see this assume that S∗ is reached at some finite date T . The dynamics of

the system imply that all variables remain constant from T and onwards.

Moreover, the same dynamics imply that all variables remain constant also

when we move backwards in time from T . But this can only be a solution to

our equations if we already are at the steady state initially.
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5 Optimal climate policy for a given carbon

budget

Allen et al. (2009) have argued that it is the total amount of carbon emitted

to the atmosphere that determines long-run climate change To quote:

the relationship between cumulative emissions and peak warming is re-

markably insensitive to the emission pathway (timing of emissions or peak

emission rate). Hence policy targets based on limiting cumulative emissions

of carbon dioxide are likely to be more robust to scientific uncertainty than

emission-rate or concentration targets. Total anthropogenic emissions of one

trillion tonnes of carbon (3.67 trillion tonnes of CO2), about half of which

has already been emitted since industrialization began, results in a most likely

peak carbon-dioxide induced warming of 2 oC above pre-industrial tempera-

tures, with a 5—95% confidence interval of 1.3—3.9 0C.

Based on this, we consider the same problem as in section 3, but now let

u(x) be the benefit of emitting carbon (x), i.e. of using fossil fuels. Moreover,

let S0 be the total amount of carbon emissions in the future (from date t = 0)

that are consistent with a political goal of total temperature increase. The

model describes how u′ must develop over time. Users of carbon set u′ equal

to the carbon tax. Hence we can conclude that the optimal carbon tax must

rise at interest rate. Moreover, the level of this carbon tax is higher the lower

is S0, i.e. the lower temperature increase we accept.

6 Stock pollution with an environmental dam-

age cost function.

Section 5 described a stock pollution problem. Instead of an absolute limit to

the stock of pollution, assume now that there at time t is an environmental

cost D(S(t), t) of a stock S(t) of the pollutant in the environment, and that

DS > 0 and DSS ≥ 0. Notice that the relationship between S and D may

vary over time; if e.g. income growth implies an increased willingness to pay
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for avoiding environmental damage we will have Dt > 0. The sign and size

of Dt is, however, of no importance for the derivations below. (We could

also assume that u depends directly on t, this would not affect the analysis

below.)

Assume that the development of the stock S depends on the flow x as

follows:

Ṡ(t) = x(t)− δS(t) (30)

where δ ≥ 0. This way of modeling the depreciation of carbon in the at-

mosphere is clearly a drastic simplification, and for δ > 0 is not consistent

with the insight from Allen et al. (2009): A less drastic simplification wold

be to model the depreciation as in e.g. Farzin and Tahvonen (1996) or Hoel

(2011), which is consistent with the recommendations by David Archer (2005)

when modeling atmospheric carbon and its decay. He states that A better

approximation of the lifetime of fossil fuel CO2 for public discussion might

be "300 years, plus 25% that lasts forever".

The constraints (11)-(13) remain valid, and it follows from (13) and (30)

that S(t) can never become negative, so we need not explicitly include the

constraint (14).

The optimization problem is now

max

∫ ∞
0

e−rt [u((x(t))−D(S(t), t)] dt (31)

and the Hamiltonian is in this case

H(x, S, λ, t) = u(x)−D(S, t) + λ [x− δS]

The conditions (6)-(9) are now

∂H

∂x
= u′(x) + λ(t) ≤ 0 and [u′(x) + λ(t)]x = 0 (32)

λ̇ = (r + δ)λ+DS(S, t) (33)

Limt→∞e
−rtλ(t)S(t) = 0 (34)
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Assume that the problem has properties implying x(t) > 0 for all t. Then

S(t) must also always be positive, so that the transversality condition implies

Limt→∞e
−rtλ(t) = 0.

It is useful to define q(t) = −λ(t). Since x(t) is always positive we can

rewrite (32) and (33) as

u′(x) = q(t) (35)

q̇ = (r + δ)q −DS(S, t) (36)

We may interpret q(t) as the optimal emission tax. If we know how this tax

evolves over time we can deduce from (35) how emissions x(t) will evolve

over time. To solve for q(t) we first define

µ(t) = e−(r+δ)tq(t) (37)

implying

µ̇(t) = −(r + δ)e−(r+δ)tq(t) + e−(r+δ)tq̇(t)

Inserting from (36) gives

µ̇(t) = −e−(r+δ)tDS(S(t), t) (38)

By definition, we have for any T > t that

µ(T )− µ(t) =

T∫
t

µ̇(τ)dτ

Letting T →∞ and inserting (38) gives

µ(t) = LimT→∞µ(T ) +

∞∫
t

e−(r+δ)τDS(S(τ), τ)dτ (39)

Since LimT→∞e
−rTλ(T ) = 0, it follows that Limt→∞e

−rT [−e(r+δ)Tµ(T )
]

=
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−Limt→∞e
δTµ(T ) = 0, which can only hold if Limt→∞µ(T ) = 0. Hence, it

follows from (37) and (39) that

q(t) =

∞∫
t

e−(r+δ)(τ−t)DS(S(τ), τ)dτ (40)

This equation for the optimal emission tax has an obvious interpretation:

The amount of 1 unit of emissions at time t remaining in the atmosphere at

τ(> t) is e−δ(τ−t). To get from the additional stock at τ to additional damages

at τ we must multiply the additional stock at τ by the marginal damage at τ ,

which is DS(S(τ), τ), giving a damage equal to e−δ(τ−t)DS(S(τ), τ) for 1 unit

emissions at t. The total additional damage caused by 1 unit of emissions

at time t is the discounted sum of additional damages at all dates from t

to infinity caused by the additional stocks from t to infinity. The marginal

damage of 1 additional unit of emissions at t is thus given by the expression

above.

7 Renewable biological resources

The resource stock of non-renewable resources is always declining for posi-

tive extraction (and constant for zero extraction). For renewable biological

resources such as e.g. fish or forests the resource dynamics are different. In

the absence of any harvesting of the resource the stock will grow according to

a biological growth function G(S(t)), where S(t) is the resource stock. The

exact properties of the function G(S) will of course depend on the resource

considered. However, it is typically assumed that G(S) is bell-shaped, i.e.

positive for 0 < S < S̄. Hence, in the absence of any harvest the resource

stock will gradually approach its maximal value S̄.

When there is positive harvest x(t), the net growth of the resource stock

will be the gross biological growth minus the harvest:

Ṡ(t) = G(S(t))− x(t) (41)
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Replacing (21) with (41) is the main difference between the present case

and the case treated in the previous section. We shall in addition assume a

slightly more general cost function C(x, S) where Cx > 0 and CS < 0.

The optimization problem in section 6 is now changed to

max

∫ ∞
0

e−rt [u((x(t))− C(x(t), S(t)] dt (42)

subject to

Ṡ(t) = G(S(t))− x(t)

S(0) = S0 historically given initial resource stock (43)

x(t) ≥ 0 for all t (44)

S(t) ≥ 0 for all t (45)

where as before u(0) = 0, u′ > 0, u′′ < 0 and u′(0) = b. We assume that costs

so high for small values of S that the constraint S(t) ≥ 0 is never binding.

The Hamiltonian in this case is

H(x, S, λ) = u(x)− C(x, S) + λ [G(S)− x] (46)

and the conditions (25)-(27) are now replaced by (for x(t) > 0)

∂H

∂x
= u′(x)− Cx(x, S)− λ = 0 (47)

λ̇ = λ [r −G′(S)] + CS(x, S) (48)

Limt→∞e
−rtλ(t)S(t) = 0 (49)

Whenever extraction is positive it follows from (25) that

u′(x) = Cx(x, S) + λ (50)

An obvious question to ask is whether a steady-state solution can be

optimal. By a steady state we mean a situation where the harvest and
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resource stock are both constant. Assume that such a steady state exists,

and denote it by (x∗, S∗). It follows from (48) that λ in this case must be

constant given by

λ∗ = u′(x∗)− Cx(x∗, S∗) (51)

Since λ is constant, we have λ̇ = 0, so that (48) implies

λ∗ [r −G′(S∗)] = −CS(x∗, S∗) (52)

Finally, a constant resource stock implies from (41) that

x∗ = G(S∗) (53)

Since S and λ are constant, the transversality condition (49) is satisfied.

Hence, the three equations (51)-(53) satisfy out optimality conditions. If the

initial resource stock is equal to S∗, the optimal harvest is hence constant

and given by the equations (51)-(53).

Usually the initial resource stock will not be equal to S∗. However, it

is possible to show that for reasonable function forms the optimal solution

will gradually approach the steady-state solution.2The analysis required for

showing this will also reveal that λ∗ > 0. From the interpretation of λ this

is as expected: An increase in the stock of the resource will always give an

increase in social welfare. Since CS < 0, it follows from (52) that the long-run

resource stock S∗ must satisfy G′(S∗) < r.

8 Water management

Freshwater is used by households, agriculture, industry and for power gen-

eration. Water stored in reservoirs, lakes and aquifers is a stock, and its

management is hence a problem that can be analyzed using optimal control

theory. We first consider (section 8.1) a very simple case of an exogenous and

time-independent gross inflow of water into the stock. In section 8.2 we turn

2As in the case studied in the previous section, the steady state will only be reached
asymptotically.
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to the management of a water stock that has a yearly cycle of inflow and a

value (utility u) that also varies over the year. An obvious interpretation of

this section is how one should manage water reservoirs through a year for

the production of hydropower.

8.1 Constant water inflow and a stationary utility func-

tion

The problem is identical to the problem (41)-(45) except that we now assume

that G is exogenous and constant and that the costs C are independent of the

amount of water in the reservoir, i.e. the stock S. With the exception of (48),

the conditions (46)-(50) are valid also for the present case. SinceG′ = CS = 0

by assumption in the present case, the condition (48) is replaced by

λ̇(t) = rλ(t)− γ(t) (54)

with γ(t) ≥ 0 and γ(t)S(t) = 0, since the constraint S(t) ≥ 0 may now be

binding for some t.

There are two possible outcomes. First, if x0 defined by u′(x0) = 0

does not exceed G, the solution is to have x(t) = x0 for all t. In this case

λ(t) = γ(t) = 0 for all t, and we immediately see that all our optimality

conditions are satisfied.

The more interesting outcome is when x0 > G. In this case x(t) is de-

termined by u′(x(t)) = λ(t). Moreover, from (54) it is clear that λ(t) rises

at the rate r as long as S(t) > 0. This implies that the water use x(t) will

gradually decline over time, until at some date T we have u′(G) = λ(T ).

The initial value λ(0) is determined such that S(t) reaches zero at the date

T . After T we have γ = rλ(T ), so that λ remains constant after this date,

making the water use x stay constant equal to the inflow G after this date.

From the discussion above it is clear that this problem is very similar to

the problem considered in section 3. In both case the initial resource stock

is completely depleted. The only difference is that while x was zero after

depletion in section 3, we now have x equal to the exogenous and positive
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water inflow after depletion has occurred.

8.2 Optimal management of water for hydropower over

a yearly cycle

For most issues related to water management, the inflow is not constant over

time. There will typically be a yearly cycle with variations of inflow over the

year. The demand for water, expressed by the utility function u, typically

also varies through a year. Water used for the production of hydropower

will in most countries have such properties. In Norway, the inflow is high

from early May, when the snow melting in the mountains is high. The inflow

remains relatively high til about October, after which the precipitation in the

mountains comes in the form of snow. As for electricity demand, measured

by marginal utility, it is higher in winter than in the summer, and also vary

over the daily 24 hour cycle.

To model the yearly production of hydropower, we use a finite horizon

version of our optimal control problem.3 The time unit is now one hour, and

the time horizon is one year, i.e. 8760 hours. The utility of electricity for a

particular hour t of the year is u(x(t), σ(t)) where the development of σ(t)

over the year is exogenous and uxσ > 0, so that demand is higher the higher

is σ.

Discounting within the time frame of one year is of no practical impor-

tance; we therefore set r = 0. Our optimization problem for the period for

period [0, T ] is hence

max

T∫
0

u(x(t), σ(t))dt

subject to

Ṡ(t) = G(t)− x(t) (55)

S(0) = 0 initial (and final) water in reservoir4 (56)

3See Førsund (2013) for a more thorough treatment of hydropower.
4Zero is simply a normalization; the minimum acceptable water in a reservoir is for

environmental and other reasons actually positive. Replacing zero wtih an exogenous and
positive term Smin would not change our analysis.
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x(t) ≥ 0 for all t (57)

x(t) ≤ x̄ for all t (58)

S(t) ≥ 0 for all t (59)

S(t) ≤ S̄ for all t (60)

As in section 8.1, G(t) is exogenous. However unlike in the previous case,

G(t) varies over the year.

The interpretation of the constraint (58) is that there is a maximal ca-

pacity limit to how much electricity can be produced in any hour.

We assume that the constraint S(t) ≥ 0 is only binding at T . The

interpretation of this is that during the first part of the whole period [0, T ],

i.e. from May onwards in Norway, the exogenous inflow G(t) is larger than

the optimal production x(t), so that the amount of water in the reservoir

S(t) is increasing. Later in the period, from about October in Norway, the

opposite is true, and S(t) declines towards zero5 as we approach T .

The interpretation of the constraint (60) is that when S(t) = S̄, the

reservoir is full. Any additional inflow must be either be used for electricity

production so the outflow is equal to the inflow, or additional precipitation

simply overflows (so Ṡ(t) = 0 even if G(t) > x(t) in this case; however, as

long as ux > 0 it will not be optimal to let the water overflow).

The Hamiltonian is

H = u(x, σ) + λ(G− x) + α(S̄ − S)

The term +α(S̄ − S) represents the constraint S(t) ≤ S̄,with α(t) ≥ 0 and

α(t)(S̄−S(t)) = 0. See also Remark 4 in Section 2, and remember that, due

to our assumption that in the optimal solution we have S(t) > 0 for t ∈ (0, T ),

we need not explicitly include any term for the constraint S(t) ≥ 0.6

5Zero is simply a normalization, the minimum acceptable water in a reservoir is for
environmental and other reasons actually positive. Replacing zero wtih and exogenous
and positive term Smin would not change our analysis.

6By introducing an additional state variable Z(t) = S̄ − S(t) we could reformulate
our problem so that it becomes formally identical to a generalized version (to two state
variables) of the problem described in Section 2.
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The conditions for the optimum are (for x(t) > 0)

∂H

∂x
= ux(x, σ)− λ ≥ 0, = 0 for x(t) < x̄ (61)

λ̇ = −∂H
∂S

= α ≥ 0, = 0 for S(t) < S̄ (62)

λ(T )S(T ) = 0 (63)

Consider first the simplest case when x(t) < x̄ and S(t) < S̄ for all t in

the optimal solution. Then ux = λ for all t, and λ is constant. The level

of λ is determined so that S(T ) = 0. In other words, electricity production

through the year is varied in a manner that makes the marginal utility (i.e.

price) constant throughout the year.

Assume next that there is a time period [t1, t2] during which the constraint

(60) is binding. In Norway, such a period would typically occur in the fall

after a summer with a lot of rain. Assuming that the constraint (60) is

strictly binding in the sense that α > 0, it is clear from (62) that λ(t) will

have a lower value before t1 than after t2. Hence, the electricity price ux will

be lower before t1 (summer) than after t2 (winter).

Notice also that when α > 0 so that the constraint S(t) = S̄ is binding, λ

and hence the electricity price ux is rising. This has an obvious interpretation:

If ux were declining, social welfare would increase by using more water at an

early date and less at a later date. An adjustment of this type would not be

prevented by the constraint S(t) ≤ S̄. A period of S(t) = S̄ and ux declining

can therefore not be optimal.

Assume next that there is a time period [t3, t4] during which the constraint

(58) is binding. In Norway, such a period would typically occur in the winter

when there is high demand. If this constraint is strictly binding, it follows

from (61) that ux > λ during this period. Hence, the electricity price ux will

be higher during such a period of high demand than it is in other times of

the year.
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